SNAP Toolbox

Interferometry Tutorial

Mundi Copernicus DIAS (Data and Information Access Services)

AUTHOR Dr. Abdelghafour HALIMI

mundiwebservices.com

Mundi Web Services, Atos, Atos Consulting, Atos Worldline, Atos Sphere, Atos Cloud and Atos WorldGrid are registered trademarks of Atos SA. July 2011. © **Copyright 2018 Mundi Web Services**

All rights reserved. Reproduction in whole or in parts is prohibited without the written consent of the copyright owner.

1. Contents

2.	SNA	۱P	3
Ĩ	2.1	Introduction	3
2	2.2	Feature Highlights	3
3.	Inte	rferometry Tutorial	4
	3.1	Goal	4
3	3.2	Skills aquired at the end of the training	4
3	3.3	Training kit	4
3	3.4	Steps for DInSAR Processing	6
	3.4.	1 Data Manipulation:	6
	٠	Open the Products	6
	•	Locate the Products	7
	•	Explore the products	8
	•	View the products	8
	3.4.	2 Data Processing	9
	٠	Coregistration	9
		TOPS Split	9
		Applying Orbit Information	10
		Back Geocoding and Enhanced Spectral Diversity	11
	٠	Interferogram Formation and Coherence Estimation	12
	•	TOPS Deburst	14
	٠	Topographic Phase Removal	14
	•	Multi-looking	15
	٠	Phase Filtering	15
	•	Summary (Automatic DInSAR processing using Graph Builder)	17
	٠	Phase Unwrapping	17
		Export to SNAPHU	
		Unwrapping with SNAPHU	19
		SNAPHU Import	20
	•	Phase to Displacement	21
	•	Terrain Correction (Geocoding)	21
	•	Mask out low coherence pixels	22
	3.4.	3 Results	24

2. SNAP

2.1 Introduction

The SentiNel Application Platform (SNAP) is built on prior open source toolbox development (such as BEAM, NEST and ORFEO) and presents a strong evolution, in particular, by sharing a common architecture and by introducing innovative functionalities and new processing capabilities. SNAP is being developed, under GNU GPL open source license, in a coordinated joint venture by several industrial partners and scientists. The SNAP architecture has been designed to ensure highest performance when dealing with very large imagery and consists of several toolboxes that process data from the Copernicus Sentinels satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, SITBX (Sentinel-1 ToolBoX) which is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. it provides a flowchart processing method such as Graph Builder, and has several practical features such as automatic downloading of DEM (Digital Elevation Model), InSAR (Interferometric SAR) and DInSAR (Differential InSAR) techniques which work correctly and are widely used recently around the world thanks to the latest updates to the toolbox.

2.2 Feature Highlights

- Common architecture for all Toolboxes
- Very fast image display and navigation even of giga-pixel images
- Graph Processing Framework (GPF): for creating user-defined processing chains
- Advanced **layer management** allows adding and manipulation of new overlays such as images of other bands, images from WMS servers or ESRI shapefiles
- Rich region-of-interest definitions for statistics and various plots
- Easy bitmask definition and overlay
- Flexible **band arithmetic** using arbitrary mathematical expressions
- Accurate reprojection and ortho-rectification to common map projections
- Geo-coding and rectification using ground control points
- Automatic SRTM DEM download and tile selection
- Product library for scanning and cataloguing large archives efficiently
- Multithreading and Multi-core processor support
- Integrated WorldWind visualisation

SNAP	<u>.</u>			×
Eile Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help				
📾 🖫 ୭ (॰ 🔐 🚜 🚚 🖻 🔍 🏷 🖉 💀 🔟 🚳 🚇 🗠 🖄 🗴 🐞 🚟 🖧 📽 📽 🐄	le:	×	* *	*
Product Explorer × Pixel Info –				1 Sa
SNAP Sentinels Application Platform Done loading modules.				roduct Library
Colour Manipulation - [3] displacement_VV × Uncertainty Visualisation World View -				🕅 Layer Manager
This tool window is used to manipulate the colouring of images shown in an image view. Right now, there is no selected image view.				🕅 Mask Manager

3. Interferometry Tutorial

What is Interferometry?

Interferometric synthetic aperture radar (InSAR) exploits the phase difference between two complex radar SAR observations taken from slightly different sensor positions and extracts information about the earth's surface.

A SAR signal contains amplitude and phase information. The amplitude is the strength of the radar response and the phase is the fraction of one complete sine wave cycle (a single SAR wavelength). The phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. By combining the phase of these two images after coregistration, an interferogram can be generated whose phase is highly correlated to the terrain topography. In the case of differential interferometry (DInSAR), this topographic phase contribution is removed using a digital elevation model (DEM). The remaining variation in the interferogram can be attributed to surface changes which occurred between the two image acquisition dates, as well as unwanted atmospheric effects

3.1 Goal

The goal of this tutorial is to provide novice and experienced remote sensing users with step-by-step instructions on interferometric processing with Sentinel-1 Interferometric Wide Swath products.

3.2 Skills aquired at the end of the training

- Interferometry
- Building interferograms from SLC images
- Map deformation

3.3 Training kit

• Mundi SNAP Docker Image

The docker version made available on Mundi, has been built by Mundi development team and can be found <u>here</u>. Note that, you will have to log with your mundi credentials to access the mundi shared docker repository.

To use the SNAP docker image on your virtual machine (VM), docker must be installed in all Mundi VM templates and the following commands must be executed replacing <variable> according to your needs:

- Log yourself to the docker repository with your mundi website credentials: sudo docker login -u <Mundi website user email> -p <Mundi website user password> https://publicreg.mundiwebservices.com/

Upload the desired docker images on your VM:
 sudo docker pull publicreg.mundiwebservices.com/esa-snap:<version>

- Launch your docker in order to use orfeo-toolbox: sudo docker run -it -v \$(pwd):/data publicreg.mundiwebservices.com/esasnap:<version> bash

• Dataset

The data used in this tutorial includes images from Sentinel-1 SLC IW over the eastern side of Réunion island (a French department) in the Indian Ocean at different time. The figure below shows the extent and location of the Sentinel 1 -1 SLC IW data (yellow), and the area of interest over the shield volcano Peak of the Furnace (blue)

Sentinel-1 SLC IW : Single Look Complex (SLC) Interferometric Wide (IW) Swath products consist of focused SAR data geo-referenced using orbit and attitude data from the satellite and provided in zero-Doppler slant-range geometry. Mundi Web Services provides the complete collection, with fresh free data ONLINE from January 2018 with global coverage, and from January 2017 for Europe. A rolling policy of 12 months for World and 24 months for Europe is currently applied.

The data used in this tutorial can be downloaded from the Mundi Web Services Geodata UI <u>here</u> (login required, registration is free)

Search for the two product IDs and download them: SIA_IW_SLC__ISDV_20191212T145256_20191212T145324_030316_0377B2_B7C8 SIA_IW_SLC__ISDV_20200305T145254_20200305T145322_031541_03A23C_8627

The IW SLC products downloaded contains one image per sub-swath, per polarization channel, for a total of three images. Each sub-swath image consists of a series of bursts, where each burst was processed as a separate SLC image. The individually focused complex burst images are included, in azimuth-time order, into a single sub-swath image, with black-fill demarcation in between.

The figure below shows the Sub-swaths (red) and bursts (white) of S1 IW products as well as the subset used in this tutorial (bleu)

• System Requirements

Creating an interferogram using Sentinel-1 Toolbox is a very computer resource-intensive process and some steps can take a very long time to complete. Here are some hints to help speed things up and keep the program from freezing.

- Requires at least 16 GB memory RAM
- A Solid State Drive (SSD), as opposed to Hard Disk Drive, will speed up processing
- Close other applications
- Do not use the computer while a product is being processed
- Remove the previous product once a new product has been generated

3.4 Steps for DInSAR Processing

3.4.1 Data Manipulation:

In order to perform interferometric processing, the input products should be two or more SLC products over the same area acquired at different times, such as the sample images provided in this tutorial.

Important: Sentinel-1 Toolbox works from the zip file format, so SLC files must remain zipped.

• Open the Products

- Use the **Open Product** button in the top toolbar and browse to the location of the zipped Sentinel-1 Interferometric Wide (IW) SLC products.
- Select the two .zip SLC files. Click **Open** to load the files into Sentinel-1 Toolbox.

Look in: 📙 Data_Tutorial 🗸 🖻 🖄								
0	Nom	2.7	Taille	Type d'élément	Modifié le			
uments r	9 S1A_IW_ 9 S1A_IW_	SLC_1SDV_20191212T145256_20191212T145324_030316_0377B2_B7C8.zip SLC_1SDV_20200305T145254_20200305T145322_031541_03A23C_8627.zip	3,69 Go 3,85 Go	Archive Win Archive Win	09/09/2 09/09/2	020 14:18 020 14:19		
Bureau								
Ce PC	File <u>n</u> ame:	"S1A_IW_SLC1SDV_20191212T145256_20191212T145324_030316_037782_87	7C8.zip" "S1A_1	W_SLC1SDV_2	0200305T1	45254_20	Оре	
Réseau	Files of type:	All Files	10 - 10 -			~	Cano	

• Locate the Products

In order to identify the location of your study area within the product, you can use the *World View* or *World Map* (to see its full extent on a base map) or open the *Quicklook* for a preview of the dataset in an RGB color representation.

Note: If you miss any items in your user interface you can activate them in the menu under *View* and *Tool Windows*.

• Explore the products

In the Product Explorer window, you will see the products listed.

- Double-click on each product to expand the view.
- Double-click **Bands** to expand that folder for each product.

Product Explorer × Pixel Info -	Product Explorer × Pixel Info	-
Image: 1151A_JW_SLC150V_20191212T145256_20191212T145324_0000316_037782_B7C8 Image: 1151A_JW_SLC150V_20191212T145254_20100305T145322_031541_03A23C_8627 Image: 1151A_JW_SLC150V_201200305T145254_201200305T145322_031541_03A23C_8627 Image: 1151A_JW_SLC150V_201200305T145254_20120305T145322_031541_03A23C_8627 Image: 1151A_JW_SLC150V_201200305T145322_031541_03A235_8627 Image: 1151A_JW_SLC150V_201200305T145324_10004 Image: 1151A_JW_SLC150V_201200305T145324_10004 Image: 1151A_JW_SLC150V_201200305T145324_10004 Image: 1151A_JW_SLC150V_201200305T145324_10004 Image: 1	□ [1] SIA_JW_SICISOV_20191212T145256_20191212T145324_030316_037782_B7C8 □ Metadata □ The-Pont Grids □ The-Pont Grids □ TUJVI_VH □ TUVI_VH □ Theranty_TW_LWH □ TUV_ZWH □ TUV_ZW □ THEranty_TW_ZW □ THEranty_TW_ZW <t< th=""><th>~</th></t<>	~
Product Explorer Tab within th	e SNAP Toolbox user interface	

In the *Bands* folder, you will find bands containing the real (i) and imaginary (q) parts of the complex data. The i and q bands are the bands that are actually in the product, while the V(irtual) Intensity band is there to assist you in working with and visualizing the complex data.

In Sentinel-1 IW SLC products, you will find three sub-swaths labeled IW1, IW2, and IW3. Each subswath is for an adjacent acquisition by the TOPS mode.

Note: To more easily follow the recipe, ensure that the _B7C8 SLC (earlier acquisition data) is listed as the first product and the _8627 SLC (later acquisition data) is listed as the second product in the Product Explorer window.

• View the products

To view the data, double-click on the **Intensity_IW1_VV** band of one of the two images. Zoom in on the image and pan by using the tools in the *Navigation* window displayed below the *Product Explorer* window. Within a sub-swath, TOPS data are acquired in bursts. Each burst is separated by a demarcation zone. Any "data" within these demarcation zones can be considered invalid and should be zero-filled but may also contain garbage values.

Intensity image of IW3 sub-swath with bursts and demarcation areas identified.

3.4.2 Data Processing

Coregistration

For interferometric processing, two or more images must be coregistered into a stack. One image is selected as the master and the other images are the "slaves." The pixels in "slave" images will be moved to align with the master image to sub-pixel accuracy. Coregistration ensures that each ground target contributes to the same (range, azimuth) pixel in both the master and the "slave" image.

S-1 TOPS Coregistration consists of a series of steps, which occur automatically once processing starts:

- 1. Reading the two data products
- 2. Selecting a sub-swath and bursts with TOPSAR-Split
- 3. Applying precision orbit correction with Apply-Orbit-File
- 4. Conducting a DEM-assisted Back-Geocoding Coregistration
- 5. increasing the quality of the coregistration by applying the S-1 Enhanced Spectal Diversity (ESD) operator

SNAP offers to combine all these steps within the S-1 TOPS Coregistration with ESD operator, but this processing chain consumes a lot of memory. In this tutorial, the single steps to correctly coregister the products are performed individually and successively.

• TOPS Split

S-1 TOPS Split is applied to the data to select only those bursts which are required for the analysis. They are marked in blue in the figure below

To reduce the loaded data to the area of interest

- From the Radar menu, select Sentinel-1 TOPS > S-1 TOPS Split
- In the *TOPS-Split tabs*, select the **IW3** sub-swath, **VV** polarization and bursts from **7 to 8** for each of the products and confirm with **Run**

• Applying Orbit Information

Orbit auxiliary data contain information about the position of the satellite during the acquisition of SAR data. Orbit data are automatically downloaded by Sentinel-1 Toolbox and no manual search is required by the user.

The Precise Orbit Determination (POD) service for Sentinel-1 provides Restituted orbit files and Precise Orbit Ephemerides (POE) orbit files. POE files cover approximately 28 hours and contain orbit state vectors at fixed time steps of 10-second intervals. Files are generated one file per day and are delivered within 20 days after data acquisition.

To execute the operator for both split products as generated in the previous step

- From the Radar menu, select Apply Orbit File
- In the Apply Orbit File tabs, select Sentinel Precise (Auto Download) for Orbit State Vectors and 3 for Polynomial Degree

Apply Orbit File		×
File Help		
I/O Parameters Pro	ocessing Parameters	
Orbit State Vectors:	Sentinel Precise (Auto Download)	~
Polynomial Degree:	3	
	Do not fail if new orbit file is not found	
		Run Close

• Back Geocoding and Enhanced Spectral Diversity

The S-1 Back Geocoding operator coregisters the two split products based on the orbit information added in the previous step and information from a digital elevation model (DEM) which is downloaded by SNAP.

- From the Radar menu, select Coregestration > S-1 TOPS Coregestration > S-1 Back Geocoding
- In the *ProductSet-Reader* tab, add the products of the two dates (ending with "_split_Orb") to the file list
- In the Back-Geocoding tab, select SRTM ISec HGT (AutoDownload) for Digital elevation model, BICUBIC_INTERPOLATION for DEM Resampling Method and BISINC_5_POINT_INTERPOLATION for Resampling Type. Areas that are not covered by the DEM or are located in the ocean may optionally be masked out.
- In the Write tab, set the Directory path to your working directory.
- Click **Run** to begin coregistering the data. The resulting coregistered stack product will appear in the *Product Explorer* window with the suffix *Orb_Stack*.

📀 S-1 Back Geocoding	61	×	C S-1 Back Geocoding		×		
ProductSet-Reader Back-Geocoding Write			ProductSet-Reader Back-Geocoding Write				
File Name S1A_IVU_SLCISDV_20191212T145256_20191212T145324_030316_037782_B7C8_split_Orb S1A_IVU_SLCISDV_20200305T145254_20200305T145322_031541_03A23C_8627_split_Orb	Type SLC SLC	Acquisi Trad 12Dec2019 144 05Mar2020 144	k Orbit 30316 31541	4 - - - - - - - - - - - - -	Digital Elevation Model: DEM Resampling Method: Resampling Type: Mask out areas with no elevation Output Deramp and Demod Phase Disable Reramp	SRTM ISec HGT (Auto Download) BICUBIC_INTERPOLATION BISINC_5_POINT_INTERPOLATION	
🔞 Help 🕞 Run				<u> </u>	L	🕐 Help 🛛 🗁 Run	

To increase the quality of the coregistration you apply the S-1 Enhanced Spectal Diversity (ESD) operator (under Radar > Coregistration > Sentinel-1 TOPS Coregistration) on the stack generated by the Back Geocoding. It applies range and azimuth shift corrections to the slave image.

O Parameters Processing Parameters	
Desistration Window Width	E10
Registration Window Wight:	512 V
	512 V
earch window Accuracy in Azimuth Direction:	10 V
Search Window Accuracy in Range Direction:	16 🗸
Window oversampling factor:	128 ~
Cross-Correlation Threshold:	0.1
Coherence Threshold for Outlier Removal:	0.15
Number of Windows Per Overlap for ESD:	10
Use user supplied range shift (please enter	it below)
The overall range shift in pixels:	0.0
Use user supplied azimuth shift (please ent	er it below)
The overall azimuth shift in pixels:	0.0

After the coregistration is completed, it is advisable to visually check the quality of the stack. This can be done by an RGB representation of the master and slave product which shows if the images are correctly aligned. Select the master for red and green and the slave for blue

File Edit Vie	V_SLC	1SDV_20191212T145256_201 nalysis Layer Vector Raster	91212T14532 Optical Ra	4_030316_037782_B7C8_split_Orb_Stack_esd - [D:\Mundi_Interfero dar Tools Window Help	Selec	tt RGB-Image Channels	×
Product Exp	lorer	Y Pixel Info			Profile:		
⊞- 🛍 [8] 51	LA	Band Maths Add Elevation Band Add Land Cover Band		45324_030316_037782_B7C8_split_Orb_Stack_esd		~ 🔁 🔳	
	~	Group Nodes by Type	ype	Red:	Intensity IW3 VV mst 12Dec2019		
		Open RGB Image Window					
		Open HSV Image Window			Green:	Intensity_IW3_VV_mst_12Dec2019 ~	
		Close Product Close All Products			Blue:	Intensity IW3 VV slv1 05Mar2020	
		Close Other Products					1 Eccentral
		Save Product Save Product As	e Product e Product As			Expressions ar	e valid
		Cut	Ctrl+X		· —		
		Сору	Ctrl+C		Sto	re RGB channels as virtual bands in current product	
		Paste	Ctrl+V				
		Delete	Delete				
		Properties					
				1		<u>O</u> K <u>C</u> ancel	Help

Zoom in to an area with distinct surfaces, for example the border between land and water. The RGB image should be clear and sharp and not be dominated by one of the images (yellow [red+green] for the master or blue for the slave image). The only exception are changes in landcover or scattering mechanisms which occurred in the time between the first and the second image acquisition

Successful (top) vs failed (bottom coregistration in an RGB

Interferogram Formation and Coherence Estimation

The interferogram is formed by cross-multiplying the master image with the complex conjugate of the "slave." The amplitude of both images is multiplied while their respective phases are differenced to form the interferogram.

The phase difference map, i.e., interferometric phase at each SAR image pixel, depends only on the difference in the travel paths from the SAR sensor to the considered resolution cell during the acquisition of each image.

To form the Interferogram

- From the Radar menu, select Interferometric > Products > Interferogram Formation

Through the interferometric processing flow, we will try to eliminate other sources of error and be left with only the contributor of interest, which is typically the surface deformation related to an event.

The flat-earth phase removal is done automatically during the Interferogram Formation step. The flat-earth phase is the phase present in the interferometric signal due to the curvature of the reference surface. The flat-earth phase is estimated using the orbital and metadata information and subtracted from the complex interferogram.

The resulting product appended with "...Orb_Stack_esd_ifg" will contain the interferogram (Phase_ifg_IW...) and the

Processing Personators	
I/O Parameters Processing Parameters	
Subtract flat-earth phase	
Degree of "Flat Earth" polynomial	5 ~
Number of "Flat Earth" estimation points	501 ~
Orbit interpolation degree	3 ~
Subtract topographic phase	
Digital Elevation Model:	SRTM 3Sec (Auto Download) 🛛 🗸 🗸
Tile Extension [%]	100 🗸
Output Elevation	
Output Orthorectified Lat/Lon	
Include coherence estimation	
Square Pixel	Independent Window Sizes
Coherence Range Window Size	10
Coherence Azimuth Window Size	10

coherence (coh_IW_...) as separate bands. Double click them to check for their quality. When zoomed in, you may still see the demarcation zones between bursts in this initial interferogram. This will be removed once TOPS Deburst is applied.

As flat-earth phase removal removal was applied, the interferogram should now only contain variations from displacement, atmosphere, topographic and noise. It is displayed in a rainbow color scale ranging from $-\pi$ to $+\pi$. The patterns, also called "fringes" represent a full 2π cycle and appear in an interferogram as cycles of arbitrary colors, with each cycle representing half the sensor's wavelength. Relative ground movement between two points is later derived by counting the fringes and multiplying by half of the wavelength. The closer the fringes are together, the greater the strain on the ground.

• TOPS Deburst

To seamlessly join all bursts in a swath into a single image, we apply the TOPS Deburst operator from the Sentinel-1 TOPS menu.

- Navigate to the Radar menu, select Sentinel-1 TOPS > S-1 TOPS Deburst option
- Keep the default values, ensuring that product (tagged.._Orb_Stack_esd_ifg) is selected as the Source and output Directory path is correct
- Click Run

The resulting product will be appended with Orb_Stack_esd_ifg_deb

Radar Tools Window	Help
Apply Orbit File	₩ ## @ GCP
Radiometric •	
Speckle Filtering	
Coregistration •	
Interferometric	
Geometric 🕨	
Sentinel-1 TOPS	S-1 SLC to GRD
ENVISAT ASAR	S-1 Slice Assembly
SAR Applications	S-1 TOPS Split
SAR Utilities	S-1 TOPS Deburst
SAR Wizards	S-1 TOPS Merge
Complex to Detected GR	S-1 Remove GRD Border Noise
Multilooking	S-1 EAP Phase Correction

• Topographic Phase Removal

To emphasize phase signatures related to deformation, topographic phase contributions are typically removed using a known DEM. In Sentinel-1 Toolbox, the Topographic Phase Removal operator will simulate an interferogram based on a reference DEM and subtract it from the processed interferogram.

- Navigate to the *Radar* menu, select *Interferometric* > *Products* > *Topographic Phase Removal* option
- In the Topographic Phase Removal tab, select SRTM ISec HGT (AutoDownload) for Digital elevation model and click Run

Run Close

• Multi-looking

The first step to improve phase fidelity is called multi-looking. Navigate to the *Radar* dropdown menu.

- Select the SAR Utilities > Multilooking option, ensure that the source is set to product with (tagged _dinsar) and the output Directory is correct
- Click on the *Processing Parameters* tab.

Note: The coherence band (starting with coh_) will be essential if your intention is to unwrap the interferogram or create a deformation map. Coherence is used to verify the legitimacy of the derived phase data; typically, data with coherence values less than 0.3 are thrown out.

 Use the Ctrl button to select the i, q, and coh bands from the list as the Source Bands to be multi-looked.

Because the phase band is virtual, it is only a temporary visualization of the interferogram. After multi-looking is performed, this band will disappear, but it will be restored in the following Goldstein Phase Filtering step.

- In the Number of Range Looks field, enter 4

In essence, multi-looking performs a spatial average of a number of neighboring pixels (in our case, 4×1 pixels) to suppress noise and proportion the image correctly. This process comes at the expense of spatial resolution.

- Click Run. The resulting product name is appended with ...Stack_esd_ifg_deb_dinsar_ML

• Phase Filtering

Interferometric phase can be corrupted by noise from temporal and geometric decorrelation, volume scattering, and other processing errors. To be able to properly analyze the phase signatures in the interferogram, the signal-to-noise ratio will be increased by applying phase

@ Multilooking	Х
File Help	
I/O Parameters Processin	ng Parameters
Source Bands:	i_jfg_VV_12Dec2019_05Mar2020 q_jfg_VV_12Dec2019_05Mar2020 Intensity_jfg_VV_12Dec2019_05Mar2020_jfg_srd_VV Phase_jfg_srd_VV_12Dec2019_05Mar2020 coh_IW3_VV_12Dec2019_05Mar2020
GR Square Pixel	Independent Looks
Number of Range Looks:	4
Number of Azimuth Looks:	1
Mean GR Square Pixel:	13.793384
Output Intensity	
	Note: Detection for complex data is done without resampling.
	<u>R</u> un <u>C</u> lose

filtering techniques such as the Goldstein filter which uses a Fast Fourier Transformation (FFT) to enhance the signal-to-noise ratio of the image.

To apply the Goldstein Phase Filtering

- Navigate to Radar > Interferometric > Filtering
- Select Goldstein Phase Filtering
- Keep the default values and click *Run*

The resulting product name is appended with Orb_Stack_esd_ifg_deb_dinsar_ML_flt.

After phase filtering, the interferometric phase is significantly improved, and the dense earthquake deformation-related ring pattern is now clearly visible. This interferogram is now ready to be unwrapped.

• Summary (Automatic DInSAR processing using Graph Builder)

SNAP offers to combine all the steps describe above within the Graph Builder, but this processing chain consumes a lot of memory. We recommend using the step by step method.

Build and Apply DInSAR Processing Chain

- Graphical User Interface path: Tools > Graph Builder
- Build a graph so that it looks like the following:

- Input 1: S1A_IW_SLC__1SDV_20191212T145256_20191212T145324_030316_0377B2_B7C8 (Read)
- Input 2: S1A_IW_SLC__1SDV_20200305T145254_20200305T145322_031541_03A23C_8627(Read2)
- Output:

SIA_IW_SLC__ISDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_ Stack_esd_ifg_deb_dinsar_ML_flt (Write)

- Processing parameters:
 - o Add operators by order as defined above in the manual step-by-step processing
 - Specify processing parameters accordingly
 - Save processing graph (*.xml file)
 - Run the processing graph

• Phase Unwrapping

Phase unwrapping is the most complicated stage of interferometric data processing. In this recipe, we will use SNAPHU, which is a two-dimensional phase unwrapping algorithm developed by Chen and Zebker. Once the interferogram is unwrapped, height values can be derived from the product for use in further processing, such as generating deformation maps or DEMs.

The interferometric phase is ambiguous and only known within 2π . In order to be able to relate the interferometric phase to the topographic height, the phase must first be unwrapped. The altitude of ambiguity is defined as the altitude difference that generates an interferometric phase change of 2π after interferogram flattening.

Phase unwrapping solves this ambiguity by integrating phase difference between neighboring pixels. After deleting any integer number of altitudes of ambiguity (equivalent to an integer number of 2π phase cycles), the phase variation between two points on the flattened interferogram provides a measurement of the actual altitude variation.

Unwrapping in SNAP follows three distinct steps:

- **Export** of the wrapped phase (and definition of the parameters)
- **Unwrapping** of the phase (performed outside SNAP by snaphu)
- Import of the unwrapped phase back into SNAP

• Export to SNAPHU

- Select the product from the *Product Explorer* tab
- Navigate to: Radar > Interferometric > Unwrapping > Snaphu Export
- In the *Snaphu Export* tab, select your working directory as the target folder. If the selection of the directory does not work, simply copy and paste the path of your working directory into the text field.
 - We recommend creating a separate folder for this step.
- Select DEFO for deformation mapping in Statistical-cost mode and MCF as initial method
- To speed up the unwrapping process, you may increase the number of processors (this depends on the CPU you have)
- Click Run to create SNAPHU export folder

Note: You can neglect the eventual error message (Error: [Nodeld: SnaphuExport Please add a target folder]. It will go away once you switch tabs or hit **Run**, as long as you have entered a valid target folder.

		📀 Snaphu Export		×
		Read SnaphuExport		
File Edit View Analysis Layer Vector Raster Optical	Radar Tools Window Help Apply Othir File Radiometric	Target folder: Statistical-cost mode: Initial method: Number of Tile Rows: Number of Tile Column:	D: Wundi_Interferometry\SNAP\Mundi_snap_tutorial\volcan_piton_jw3_7_8_v3_snaphu_tile50\Data_Tutorial\SNAPHU_export DEFO MCF	 ~ 20 20
Potentieut -		Number of Processors: Row Overlap: Column Overlap: Tile Cost Threshold:		8 200
			Run Propert Dialog Poy	
			Snaphu Export Dialog Box	

A directory is created in your working directory with the same name as the product you selected as an input (here:

SIA_IW_SLC__ISDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ML_flt). Inside this folder, you will find:

- the **coherence**: image (*.img) and metadata (*.hdr)
- the **wrapped phase**: image (*.img) and metadata (*.hdr)
- the **unwrapped phase**: only the metadata (*.hdr), because the image (*.img) is first to be created by snaphu in the next step.
- a **configuration file** (snaphu.conf) containing the parameters defined in the export operator

• Unwrapping with SNAPHU

Once the product is exported correctly, the unwrapping can be started from within SNAP, by calling the *Snaphu-unwrapping* operator (under *Radar* > *Interferometric* > *Unwrapping*).

- As an input product, select the product (s1A_IW_SLC__ISDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ML_flt) from the *Product Explorer* tab
- For the output folder in the *Processing Parameters* tab you can activate **Display execution output** and select the folder which was created during the export (here:

 $\label{eq:siamulti} SIA_IW_SLC__1SDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ML_flt \Big)$

 To start the unwrapping, click **Run**. SNAP then sends the command stored in snaphu.conf to the snaphu.exe which creates the raster image belonging to the unwrapped phase metadata.

	Snaphu-unwrapping 🛛 🕹
	File Help
🛃 Snaphu-unwrapping X	I/O Parameters Processing Parameters
File Help	Display execution output
I/O Parameters Processing Parameters	Qubut folder: D: Mundi Interferometry/SNAP/Mundi span tutorial/volcan piton iw3 7 8 v3 spanhu tile50/Data Tutorial/SNA
Source Product	Contraction of the second s
Source product: [13] SIA_IW_SLC_1SDV_2019121ZT145256_2019121ZT145324_030316_037782_B7C8_split_Orb_Stack_esd_i v	Snaphu-unwrapping X
	Starting tool execution
	0%
	Unwrapping tile at row 0, column 7 (pid 28192) Cancel
	< >>
	<pre>snaphu v1.4.2 27 parameters input from file snaphu.conf (84 lines total) Logging run-time parameters to file snaphu.log Creating temporary directory snaphu_tiles_31444 Uwwrapping tile at row 0, column 0 (pid 35528) Uwwrapping tile at row 0, column 1 (pid 34560) Uwwrapping tile at row 0, column 2 (pid 35638) Uwwrapping tile at row 0, column 4 (pid 3540) Uwwrapping tile at row 0, column 4 (pid 3540) Uwwrapping tile at row 0, column 4 (pid 3540) Uwwrapping tile at row 0, column 4 (pid 3540) Uwwrapping tile at row 0, column 6 (pid 1620) Uwwrapping tile at row 0, column 6 (pid 1820) Uwwrapping tile at row 0, column 7 (pid 28192) </pre>
<u>Run</u> Gose <u>H</u> eb	Run Close Help
Unwrapping w	ith the snaphu plugin

Note: If the tool is not executed by clicking Run, go to *Manage External Tools* in the *Tools* menu. Select "Snaphu-unwrapping" and click **Edit the selected operator** to open the configuration and enter the export directory in the variable **USERPROFILE** under the *System Variables* tab. Confirm with **OK** and start the *Snaphu-unwrapping* operator again.

perator Descriptor	co add	Variable	Syste	m Variables
Configuration Parameters	SI SI	hared	Key	Value
reprocessing			SNAPHU HOME	SUSER HOME
hereter Deremetere			SNAPHU_TOOL_EXE	C:\Users\hagha\.snap\auxdata\snaphu-v1.4.2_win64
perator Parameters			SNAPHU_EXE	snaphu.exe
stem Variables			USERPROFILE	C:\Users\hagha
undled Binaries			HOME	SUSERPROFILE
			USER HOME	SUSERPROFILE
		Edit U	USERPROFILE Windows value: _45324_030316_037	X 782_B7C8_split_Orb_Stack_esd_jfg_deb_dinsar_ML_flt
		Edit U	USERPROFILE Windows value: _45324_030316_037 Linux value: ~ MacOSX value: ~	X 782_B7C8_split_Orb_Stack_esd_Ifg_deb_dinsar_ML_fit OK Cancel
		Edit U	JSERPROFILE Windows value: 45324_030316_037 Linux value: ~ MacOSX value: ~	X 7B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ML_fit OK Cancel

SNAPHU Import

- Navigate to Radar > Interferometric > Unwrapping > Snaphu Import
- In the Snaphu Import window:
 - In the Read Phase tab, select the interferogram product (s1A_IW_SLC__1SDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar _ML_flt)
 - In the *Read Unwrapped Phase* tab, select the icon <u>int</u> to open a file menu and navigate to your Snaphu export folder then select the UnwPhase_XXX.hdr file
 - Leave the option "Do NOT save Wrapped interferogram in the target product" unchecked, because it is required in the later step
 - In the Write tab, to store the imported unwrapped band in a separate product (recommended), add '_unw' to the output name (here: SIA_IW_SLC__ISDV_20191212T145256_20191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ ML_flt_unw) and Run

	C Sniphu Import 1.Read Phase 2.Read Univrapper Source Product Name: [13] SJA_JW_SLCISDV_20191	C5 Phase 3-Snaphulmport 4-W/Ite	
Radar Iools Window Help Apply Orbit File Radiometric > Radiometric > Speckle Filtering > Corregistration > Corregistration > Products >	C Select Source Product Look in: 51AJW_SLC_1SDV_201912127145256_201912127145324_030316_03	v 37782_B708_ppit_Orb_Stack_end_ifg_deb_sineer_Mfit	×
Polarimetric Itering Geometric Uwwzpping Sentinel-TOPS PS/\SBAS ENVISATASAR InsAR Stack Overview SAR Applications Snaphu Import SAR Utilities Insar Stack Overview	Nom Documents r Documents D	Taile Type d'élément ModRé le Dossier de f.c 31ª dect. Fichier INB 77/02/2020 16:37 320 cet. Fichier INB 77/02/2020 16:37 302 cet. Fichier INB 77/02/2020 16:37 302 cet. Fichier INB 77/02/2020 16:37 1,73 Ko Fichier INB 77/02/2020 16:37 3,70 Ko Document 17/02/2020 16:37 3,74 Ko Fichier INB. 17/02/2020 16:37 3,44 Ko Fichier INB. 17/02/2020 17:24 3,44 Ko Fichier INB. 17/02/2020 17:24 14,5 Ko Fichier INB. 17/02/2020 17:24 160 Ko Fichier INB. 17/02/2020 17:27	× Select Cancel
	The	Snaphu Import tab	

A new product is added to the Product Explorer which contains the wrapped interferogram (Phase_ifg_IW...), the coherence (coh_IW_...) and the unwrapped phase generated with snaphu (here: Unw_Phase_ifg_08Dec2019_20Dec2019)

• Phase to Displacement

The unwrapped phase is now a continuous raster but not yet a metric measure. To convert the radian units into absolute displacements, the *Phase to Displacement* operator (under *Radar* > *Interferometric* > *Products*) is applied to the unwrapped product.

/O Parameter	S Processing Para	ameters			
Source Produ source:	ct				
[14] S1A_IV	_SLC1SDV_201	91212T1452	56_201912	12T145324_0	~
Target Produ	ct				
Name: 4_030316_0	377B2_B7C8_split_	_Orb_Stack_	esd_ifg_deb	o_dinsar_ML_flt_	_unw_dsp
Name: 4_030316_0 Save as: Directory	377B2_B7C8_split_ BEAM-DIMAP	_Orb_Stack_	esd_ifg_deb	o_dinsar_ML_flt_	_unw_dsp
Name: 4_030316_0 Save as: Directory Indi_snap	377B2_B7C8_split BEAM-DIMAP : tutorial\volcan_p	_Orb_Stack_ v	esd_ifg_deb 8_v3_snaph	o_dinsar_ML_fit_ nu_tile50\test_si	_unw_dsp
Name: 4_030316_0 Save as: Directory Indi_snap Open in 1	377B2_B7C8_split_ BEAM-DIMAP ': >_tutorial\volcan_p SNAP	_Orb_Stack_ v	esd_ifg_deb 8_v3_snaph	o_dinsar_ML_fit_ nu_tile50\test_sr	unw_dsp
Name: 4_030316_0 Save as: Directory Indi_snap Open in S	377B2_B7C8_split_ BEAM-DIMAP ': >_tutorial\volcan_p SNAP	_Orb_Stack_ v	esd_ifg_deb 8_v3_snaph	o_dinsar_ML_fit_ nu_tile50\test_sr	unw_dsp

~

• Terrain Correction (Geocoding)

Terrain Correction will geocode the image by correcting SAR geometric distortions using a digital elevation model (DEM) and producing a map projected product.

- Navigate to Radar > Geometric > Terrain Correction > Range-Doppler Terrain Correction
- In the *Range-Doppler Terrain Correction* window, select the Unwrapped Phase product as an input in the first time and then repeat the same operation for the displacement product
- In the *Processing Parameters* tab:
 - Select the option to Mask out areas without elevation
 - Change **pixel spacing**, if desired
 - If no Source Band is selected, all bands of the input product are geometrically corrected

Renar Develop Terris Constitue

• Click **Run** to geocode your data

				I/O Parameters Processing Parameters	ters	
				Source Bands:	i_jfg_VV_12Dec2019 q_jfg_VV_12Dec201 Intensity_jfg_VV_12 Phase_jfg_VV_12Dec coh_JW3_VV_12Dec Unw_Phase_jfg_120	9_05Mar 2020 9_05Mar 2020 Dec2019_05Mar 2020 2019_05Mar 2020 2019_05Mar 2020 Dec2019_05Mar 2020
				Digital Elevation Model:	SRTM 3Sec (Auto Download)	
				DEM Resampling Method:	BILINEAR_INTERPO	LATION
				Image Resampling Method:	BILINEAR_INTERPO	LATION
				Source GR Pixel Spacings (az x rg):	14.06(m) x 13.53(m	1
				Pixel Spacing (m):	14.06	
r Tools Window Help				Pixel Spacing (deg):	1.26303128947204	72E-4
Apply Orbit File	P	> > = • • • • • • • • • • • • • • • • •		Map Projection:		WGS84(DD)
Radiometric	-, 曲	+		Mask out areas without elevation	Output complex	data
Speckle Filtering	,			Output bands for:		
Coregistration				Selected source band	DEM	Latitude & Longitude
Interferometric	>			Incidence angle from ellipsoid	Local incidence and	le 🗌 Projected local incidence a
Geometric	>	Terrain Correction >	Range-Doppler Terrain Correction	Apply radiometric normalization		
Sentinel-1 TOPS	>	Ellipsoid Correction >	SAR Simulation	Save Signal band	Use projected local	incidence angle from DEM
ENVISAT ASAR	>	SAR-Mosaic	SAR-Simulation Terrain Correction		Use projected local	insidence origin from prov
SAR Applications	>	ALOS Deskewing		Save Gammau band	Use projected local	nodence angle from DEM
SAR Utilities	>	Slant Range to Ground Range		Save Beta0 band		
SAR Wizards	>	Update Geo Reference		Auxiliary File (ASAR only):	Latest Auxiliary File	
Complex to Detected GR	1					·
Multilooking						<u>R</u> un g

• Mask out low coherence pixels

Sometimes it is good to mask out image parts with low coherence to prevent misinterpretation of patterns which resulted from phase decorrelation. This is why the coherence is transferred into the displacement product as follow:

- Add the coherence via the *Band Maths* operator (right-click on the displacement product and select **Band Maths**).
- Call the new raster which is to be generated coherence and uncheck the "Virtual" option
- Open the Band Maths Expression Editor by clicking Edit Expression. You can now switch between products which have the same dimensions (rows and columns) in the Band Maths Expression Editor and double-clicking the coherence band of a previous product to add it to the expression window. Confirm with OK (twice) to apply the calculation.
- The coherence band is now part of the displacement product

	Band Maths Expression Editor		×		
	Product: [3] S1A_IW_SLC1SDV_20191212T145256_201	0191212T145324_030316_0377B2_B7C8_split_Orb_Stack_esd_ifg_deb_dinsar_ML_flt_unw			
	Data sources:		Expression:		
	\$3.Intensity_ifg_VV_12Dec2019_05Mar2020	0 + 0	\$3.coh_IW3_VV_12Dec2019_05Mar2020		
Sand Mathe	\$3.Phase_ifg_VV_12Dec2019_05Mar2020	a – a			
Tenet modult	\$3.coh_IW3_VV_12Dec2019_05Mar2020 \$3.Unw_Phase_ifg_12Dec2019_05Mar2020_VV				
[2] S1A_JW_SLCISOV_201912127145256_201912127145324_000316_037782_B7C8_split_Orb_Stack_esd_ifg_deb_dinser_ML_fit_unw_dap_TC v		@ * @			
Name: coherence		0/0			
Description:		(8)			
Spectral wavelength: 0.0		107			
Virtual (save expression only, don't store data)		Constants V	1		
Replace NaN and infinity results by 1845	Show bands	Operators 🗸	1		
Generate associated uncertainty band	Chow marke	Functions V	1		
Band maths expression:					
	Show tie-point grids				
Load Save Edit Expression	Show single flags				
QK Cancel Help			QK Cancel Help		
	Transfer of bands between pr	oducts			

To mask out image parts with low coherence, right-click on the geocoded displacement band and select **Properties**.

In the Valid-Pixel Expression, enter the term coherence > 0.6

All pixels with a coherence value below 0.6 are now made transparent in SNAP.

□-€ [2] S1A_IW_SLC1SDV_201 ⊕ ☐ Metadata ⊕ ☐ Vector Data ⊕ ☐ Bands	91212T145256_201	91212T145324_03031	Product Node Properties Name Description Modified Raster Band Properties Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	displacement_VV meters float32 6656 x 4362 coherence > 0.4	
□-€ [2] S1A_IW_SLC1SDV_201 ⊕ ☐ Metadata ⊕ ☐ Vector Data ⊕ ☐ Bands	91212T145256_201	91212T145324_03031	Name Description Modified I Raster Band Properties Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	displacement_VV meters float32 6656 x 4362 coherence > 0.4	
[2] S1A_IW_SLC1SDV_201 [2] Metadata [2] Vector Data [2] S1A_IW_SLC1SDV_201	91212T145256_201	91212T145324_03031	Description Modified I Raster Band Properties Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	meters float32 6656 x 4362 coherence > 0.4	
□- 😹 [2] S1A_IW_SLC1SDV_201 □ □ Metadata □ □ Vector Data □ □ Bands	91212T145256_201	91212T145324_03031	Modified ☐ Raster Band Properties Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	meters float32 6656 x 4362 coherence > 0.4	
[2] S1A_IW_SLC1SDV_201 [1] Metadata [2] Vector Data [2] Metads	91212T145256_201	91212T145324_03031	Raster Band Properties Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	meters float32 6656 x 4362 coherence > 0.4	
[2] S1A_IW_SLC1SDV_201 [1] Metadata [1] Vector Data [1] Bands	91212T145256_201	91212T145324_03031	Unit Data Type Raster size Valid-Pixel Expression No-Data Value Used	meters float32 6856 x 4362 coherence > 0.4	
[2] S1A_IW_SLC1SDV_201 Def Detadata Def Detadata Def Detadata Def Detadata Def Detadata	91212T145256_201	91212T145324_03031	Data Type Raster size Valid-Pixel Expression No-Data Value Used	float32 6856 x 4362 coherence > 0.4	KK
□ ··· ♀ [2] S1A_IW_SLC1SDV_201 ··· □ Metadata ··· □ Vector Data ··· □ Bands	91212T145256_201	91212T145324_03031	Raster size Valid-Pixel Expression No-Data Value Used	6856 x 4362 coherence > 0.4	
	912121145256_201	912121 145524_03031	Valid-Pixel Expression No-Data Value Used	coherence > 0.4	
Metadata Vector Data Sands			No-Data Value Used		
i vector Data ⊡∵ 🔄 Bands				\leq	
Bands			No-Data Value	0.0	
			Spectral Wavelength	0.0	
displacement_VV	Add Elevation Pa	nd	Spectral Bandwidth	0.0	
i coherence	Add Elevation ba	nu	Ancillary Variables		12,
	Band Maths		Ancillary Relations		14.
	Convert Band				
	Filtered Band				
	Linear to/from dB				
	Export Transect P	ixels			
	Open Image Win	dow			
	Add Land Cover	Band	displacement VV		0
	Cut	Ctrl+X	6856 x 4362 pixels, (meters)		
	Conv	Ctrl+C	1		
	20099	curre			
	Paste	Ctrl+V			
	Delete	Delete			
	Properties			Close	Help

3.4.3 Results

Displacement (12/2019 and 03/2020)

-0.041 -0.003 0.035 0.073 0.111 0.149 0.187 0.225 0.263

ZOOM

Volcanic Eruption 10/02/2020 & Displacement - (between 12/2019 and 03/2020)

These illustrations show terrain displacements after the volcanic eruption of Peak of the Furnace (eastern side of Réunion island) that occurred on February 10th 2020, computed on MUNDI VM with the SNAP toolbox from a set of ascending Sentinel-1 SLC pair (resp 2019/12/12 and 2020/03/05).