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ABSTRACT

This paper studies a new Bayesian algorithm for the classi-
fication of reflectance confocal microscopy (RCM) images
of human skin. The objective of this algorithm is to iden-
tify the skin lentigo, a phenomenon that originates at the der-
moepidermic junction (DEJ) from the healthy skin. The pro-
posed Bayesian approach takes advantage of the distribution
of the multiplicative speckle noise affecting these images and
of appropriate priors for the unknown model parameters. A
Metropolis-whitin-Gibbs sampler is then investigated to sam-
ple the posterior distribution of the Bayesian model associ-
ated with RCM images and to build estimators of its param-
eters, including labels indicating the class of each RCM im-
age. The resulting algorithm is applied to synthetic data and
to real images from a clinical study containing healthy and
lentigo patients. The obtained classification performance is
very encouraging.

1. INTRODUCTION

The lentigo is a hyperplasia that affects the skin. It comes
from the proliferation of melanocyte cells at certain layers of
the epidermis, mainly at the dermoepidermal junction, which
leads to the disorganization of the regular cellular network[1].
Clinically, this disorder is assessed visually on the skin sur-
face or through biopsy. Reflectance confocal microscopy
(RCM) is a non-invasive imaging technique that is capable
of capturing images of human skin from the epidermis to the
papillary dermis in real time (down to the depth of 100 - 150
µm) [2]. This technique is also used to explore various skin
lesions [3], including lentigo. For example, Fig. 1 shows
examples of images from patients with and without lentigo
(more images can be found in [4]). Various studies have
attested of the usefulness of RCM for cancer and other tu-
mor diagnosis [5]. Current practices to analyze these images
are mainly based on visual inspection. In [1], the authors
reported good correlation between RCM and histology in the
case of melanoma. Studies of RCM has also proved valuable
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for treatment follow up [6], surveillance of lentigo malign
treatment [7, 8], and guidance of cutaneous surgery [9].

Fig. 1: Images (at the depth 54 µm) from healthy (patient #1, #2,
#3, #4, #5, #6) and lentigo (patient #31, #33, #37, #38, #40,
#44) patients at the DEJ depth. One can observe more textured
images in the presence of lentigo.

However, RCM images are up to now mainly analyzed vi-
sually. Image processing methods could be helpful to exploit
their potential and provide aid for medical decision making.
Few of such methods were reported in the literature. In [10],
Luck et al. developed a nuclei segmentation method based on
a Gaussian model for the nuclei reflectivity and a truncated
Gaussian distribution for the intensity of the cytoplasm fibers.
Their Bayesian classification algorithm relies on a Gaussian



Markov random field exploiting spatial correlation between
neighboring pixels of the analyzed images. Another appli-
cation of RCM was developed and validated by Kurugol et
al. to identify the dermoepidermal junction by classifying
appropriate texture features [11, 12]. Hames et al. [13, 14]
proposed a skin layer segmentation method for RCM images
based on a logistic regression classifier. An SVM classifi-
cation method was also developed in [15] to identify skin
morphological patterns using RCM image texture features.
Finally, a wavelet-based classification method was developed
in [16] to distinguish benign and malignant melanocytic skin
tumors. This method, which will be used as a benchmark in
our study, is based on a decision tree classifier.

This paper studies a new Bayesian method for classifying
RCM image pixels into two classes corresponding to healthy
and lentigo tissues. Our first contribution is a hierarchical
Bayesian model that allows a set of RCM images to be clas-
sified into healthy and lentigo classes. Each image is as-
sumed to be corrupted by a multiplicative speckle noise with
a gamma distribution. A truncated Gaussian distribution is
then assigned to each image to classify, constraining these
images to be positive. Prior distributions are finally assigned
to the means and variances of these truncated Gaussian dis-
tributions, to the noise variances, and to the image labels.
The joint posterior distribution of the proposed model is fi-
nally determined and will be used for image classification
and parameter estimation. The second contribution of this
paper is the derivation of an estimation algorithm associated
with the proposed hierarchical Bayesian model. As the min-
imum mean square error (MMSE) and maximum a posteri-
ori (MAP) estimators of the proposed model cannot be eas-
ily computed from its joint posterior, we investigate a hy-
brid Gibbs sampler allowing this posterior to be sampled (see
[17, 18] for details). The proposed Bayesian model and esti-
mation algorithm are validated using synthetic and real RCM
images, resulting from a clinical study containing healthy and
lentigo patients. The obtained results are very promising and
show the potential of the proposed denoising and classifica-
tion strategy.

The paper is structured as follows. The classification
problem studied in this work is introduced in Section 2. The
proposed hierarchical Bayesian model and its estimation al-
gorithm are studied in Sections 3 and 4. Section 5.1 validates
the proposed technique using simulated data with different
noise levels. Section 5.2 shows results obtained using real
data obtained from a clinical study. Conclusions and future
work are finally reported in Section 6.

2. PROBLEM FORMULATION

2.1. Observation model

Consider L noise free images, containing N pixels, gathered
in the matrix S = [s1, · · · , sl] ∈ RN×L, where sl, l ∈
{1, · · · , L} denotes the image associated with the lth patient.
Denote by Y = [y1, . . . ,yl] ∈ RN×L the corresponding
noisy images. Using these notations, the observation model
is given by

yl = sl � bl, with bl ∼ G(ρl, θl) (1)

where yl and sl are (N × 1) vectors representing the lth ob-
served and noiseless images, bl is a gamma noise (N × 1)
vector with a shape parameter ρl and a scale parameter θl and
� denotes the termwise product. In order to ensure that the
proposed model (1) is identifiable, the mean of the gamma
noise is supposed to equal 1, leading to

E(bl) = 1 ⇒ ρl =
1

θl
. (2)

The problem addressed in this paper is to classify these im-
ages yl, l ∈ {1, · · · , L} into two classes representing healthy
and lentigo patients. The next section introduces a hierarchi-
cal Bayesian model that is used for this classification.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model that
can be used to estimate the unknown N × L matrix of noise-
less images S, the L × 1 vectors (z,θ) containing the class
labels and the noise variances associated with the L observed
images from the matrix Y . This model is defined by a like-
lihood, and by parameter and hyperparameter priors defined
below.

3.1. Likelihood

The multiplicative speckle noise bl is known to have a gamma
distribution. Thus, the observation model (1) leads to

ynl|snl, θl ∼ G
(

1

θl
, snl θl

)
(3)

where ∼ means "is distributed according to", G is the gamma
distribution whose probability density function (pdf) is

f(ynl | snl, θl) ∝
(ynl)

1
θl
−1

exp
(
− ynl
snl θl

)
Γ
(

1
θl

)
(snl θl)

1
θl

IR+(ynl) (4)

with IR+(ynl) the indicator function on R+, ∝ means “pro-
portional to” and Γ denotes the gamma function. Assuming
independence between the observed signals, the likelihood of
the L observed images can be written

f(Y |S,θ) ∝
N∏
n=1

L∏
l=1

f(ynl|snl, θl).



3.2. Priors for the signal of interest

To ensure the positivity of the noiseless images, a truncated
Gaussian distribution is assigned to sl for l ∈ {1, · · · , L}

sl | zl = k, µk, σ
2
k ∼ NR+(µk, σ

2
k) (5)

where NS denotes the truncated normal distribution on S, k
takes the two values 1 and 2 depending on the patient class,
and (µk, σ

2
k) are the means and variance of the two truncated

Gaussian distributions.

3.3. Prior for the noise variances

A non-informative conjugate inverse gamma prior (denoted
as IG) is classically selected for the scale parameter θj [19]

θl | a, b ∼ IG(a, b) (6)

where a and b are fixed hyperparameters, that are adjusted to
reflect the absence of prior knowledge on θl, i.e., the mean
and variance of θl were fixed to 1 and 100 in order to obtain
a flat prior. The joint prior for the vector of noise variances
denoted as f(θ | a, b) is finally obtained as the product of the
marginal densities f(θi | a, b).

3.4. Prior for the label vector z

The parameter vector z = (z1, ..., zL) is a label vector that
associates each image to a healthy or lentigo skin. Because
of the absence of prior knowledge about this parameter, it is
assigned a uniform prior defined as

P (zl = k) =
1

2
,∀l = 1, ..., L. (7)

The labels associated with the different patients are supposed
to be a priori independent, i.e., the joint prior of z denoted as
f(z) is the product of the probabilities defined in (7).

3.5. Hyperparameter priors

In order to complete the description of the proposed hierar-
chical Bayesian model and to allow hyperparameters to be
estimated directly from the data, we propose to assign pri-
ors for the different hyperparameters. A Gaussian prior has
been selected for the mean µk and a non-informative inverse
gamma prior for the variance σ2

k (see [19,20] for motivations)

µk | µ0, σ0 ∼ N (µ0, σ
2
0) (8)

σ2
k | α0, β0 ∼ IG(α0, β0) (9)

where µ0, σ2
0 , α0, β0 are fixed in order to obtain flat priors,

i.e., µ0 = 100, σ2
0 = 105 whereas the mean and variance of

σ2
k were fixed to 1 and 1000. The joint pdfs f(µ | µ0, σ0)

and f(σ2 | α0, β0) are finally obtained as the product of their
marginal densities assuming prior independency between the
components of these two vectors.

Y

θS

baσkµkz

µ0 σ0 α0 β0

Fig. 2: DAG for the parameter and hyperparameter priors.
The user fixed hyperparameters appear in boxes (continuous
line).

3.6. Joint posterior distribution

The proposed Bayesian model is illustrated by the directed
acyclic graph (DAG) displayed in Fig. 2, which highlights
the relationships between the observations Y , the parameters
S,θ, z and the hyperparameters µk, σ2

k. Assuming prior in-
dependence between the different components of the param-
eter vector X =

(
S,θ, z, µk, σ

2
k

)
, the joint posterior dis-

tribution of this Bayesian model can be computed using the
following hierarchical structure

f(X | Y ) ∝ f(Y | S,θ)f(S,θ, z,µ,σ2) (10)

with f(S,θ, z,µ,σ2) = f(S | z,µ,σ2)f(θ | a, b)

× f(µ | µ0, σ0)f(σ2 | α0, β0)f(z). (11)

The complexity of the proposed Bayesian model summa-
rized in the DAG of Fig. 2 and its resulting posterior (10)
prevent a simple computation of the maximum a-posteriori
(MAP) or minimum mean square (MSE) estimators of the un-
known model parameters. The next section studies a Markov
chain Monte Carlo (MCMC) method that is used to sample
the posterior (10) and to build estimators of the parameters
involved in the proposed Bayesian model using the generated
samples.

4. METROPOLIS-WITHIN-GIBBS ALGORITHM

This section studies a hybrid-Gibbs-sampler, which is guar-
anteed to generate samples asymptotically distributed ac-
cording to the target distribution (10). The Gibbs sampler
described in Algo. 1, iteratively generates samples dis-
tributed according to the conditional distributions of (10)
that are not described here for brevity (see [4, Appendix A]
for more details regarding these distributions). Because of
the complexity of the conditional distributions, we consider
random-walk Metropolis-Hastings (RWMH) [17, 18] moves
within the Gibbs sampler, which requires the definition of
proposal distributions for each conditional distribution that is



not easy to sample. In our case, we use a truncated Gaussian
as a proposal distribution for the parameters S,θ,σ2 and a
Gaussian distribution for µ. The main steps of the proposed

Algorithm 1 Metropolis-within-Gibbs algorithm

1: Input: Nbi,NMC,S,θ, z,µ,σ
2

2: Initialization
3: Initialize S(0),θ(0), z(0),µ(0),σ2(0)

4: for i=1 to NMC do
5: Parameter update
6: Sample S(i) | Y ,θ, z,µ,σ2 according to (20) in 8

using an RWMH with a truncated Gaussian proposal
7: Sample θ(i) | Y ,S, a, b according to (21) in 8 using

an RWMH with a truncated Gaussian proposal
8: Sample µ(i) | S,σ2, µ0, σ

2
0 according to (22) in 8 us-

ing an RWMH with a Gaussian proposal
9: Sample σ2(i) | S,µ, α0, β0 according to (23) in 8 us-

ing an RWMH with a truncated Gaussian proposal
10: Sample z(i) | S,µ,σ2 from the pdf (24) in 8
11: end for
12: Result: S(i),θ(i), z(i),µ(i),σ2(i) for i = 1, ...,NMC.

Metropolis-within-Gibbs sampler are summarized in Algo.
1. This algorithm provides a sequence of samples of the
vector X =

(
S,θ, z, µk, σ

2
k

)
denoted as X(i)

j that are used
to approximate the MMSE estimators by using Monte-Carlo
integration [21] as

XMMSE ' 1

NMC − Nbi

NMC∑
i=Nbi+1

X(i) (12)

where Nbi is the number of burn-in iterations and NMC is the
total number of Monte Calo iterations. Finally, the following
maximum a-posteriori (MAP) estimator is considered for the
label z

zMAP
l '

1 if
[
z
(i)
l = 1

]NMC

i=Nbi+1
≥
[
z
(i)
l = 2

]NMC

i=Nbi+1

2 otherwise
(13)

where [x = 1]
j
i and [x = 2]

j
i denote the numbers of samples

satisfying the conditions x = 1 and x = 2 in the interval [i, j].

4.1. Convergence:

Running multiple chains with different initializations allows
to define various convergence measures for MCMC meth-
ods [22]. The popular between-within variance criterion has
shown interesting properties for diagnosing convergence of
MCMC methods. This criterion was initially studied by Gel-
man and Rubin in [23] and has been used in many studies
including [22, p. 33], [24] and [25]. The main idea is to run
M parallel chains of length Nr + Nbi for each data set with

different starting values and to evaluate the dispersion of the
estimates obtained from the different chains. The between-
sequence variance B and within-sequence varianceW for the
M Markov chains are defined by

B =
Nr

M − 1

M∑
m=1

(
k̄m − k̄

)2
(14)

W =
1

M

M∑
m=1

1

Nr

Nr∑
t=1

(
k(t)m − k̄m

)2
(15)

with

k̄m =
1

Nr

Nr∑
t=1

k(t)m , k̄ =
1

M

M∑
m=1

k̄m, Nr = NMC − Nbi.

(16)
where k is the parameter of interest and k(t)m is its estimate at
the tth run of mth chain. The convergence of the chain can
then be monitored by the so-called potential scale reduction
factor ρ̂ defined as [26, p. 332]

√
ρ̂ =

√
1

W

(
Nr − 1

Nr
W +

1

Nr
B

)
. (17)

5. SIMULATION RESULTS

5.1. Synthetic data

This section evaluates the performance of the proposed al-
gorithm on synthetic data. Different experiments were con-
ducted using three values of the signal to noise ratio SNR ∈
{0 dB, 10 dB, 20 dB}, allowing the algorithm performance to
be appreciated for different noise levels. This section con-
siders L = 100 synthetic images. Each image contains N =
2000 pixels and was generated according to (3). These images
were separated into healthy and lentigo classes containing 50
images. The noiseless images of the two classes were respec-
tively generated according to the truncated Gaussian distribu-
tions NR+(µ1, σ

2
1) and NR+(µ2, σ

2
2), with µ1 = 17, µ2 =

20, σ2
1 = 2, σ2

2 = 4. The sampler convergence of the algo-
rithm is monitored by computing the potential scale reduc-
tion factor introduced in (4.1) for an appropriate parameter
of interest. Different choices for the parameter k could be
considered for the proposed method. This paper proposes
to monitor the convergence of the Metropolis-within-Gibbs
sampler by checking the noise variance θ (see [20, 24] for a
similar choice). The potential scale reduction factor for pa-
rameter θ computed for M = 10 Markov chains is equal to
1.01. This value of

√
ρ̂ confirms the good convergence of

the sampler (a recommendation for convergence assessment
is a value of

√
ρ̂ ≤ 1.2 [26, p. 332] ). Figs. 3, 4 and

5 show the evolution of the Markov chains for the different



parameters µ̂1, µ̂2, σ̂1, σ̂2,θ estimated for synthetic data with
SNRY = [0 dB, 10 dB, 20 dB], respectively. Algo. 1 was
run for NMC = 100000 iterations and the different model pa-
rameters were estimated using (12) and (13) using a burn-in
period of length Nbi = 99900. The performance of the al-
gorithm was evaluated by computing the mean square errors
(MSEs) of the different parameters and the signal to noise ra-
tios (SNRs) defined as

MSEj =‖ X̂j −Xj ‖2 (18)

SNRj = 20 log10

(
||Xj ||

||Xj − X̂j ||

)
. (19)

Quantitative results are presented in Table 1 for the three ex-
periments. This table shows good estimation results of the pa-
rameters when considering different noise levels. The Table
also shows excellent classification results for SNRY ≥ 10 dB,
and 91% when considering the challenging case SNRY = 0
dB. These results highlight the potential of the proposed strat-
egy in denoising and classifying the images obtained from
model (3) and improving the estimation of the different pa-
rameters of this model.

5.2. Real data

This section is devoted to the validation of the proposed
denoising and classification algorithm when applied to real
RCM images. These RCM images were acquired with appa-
ratus Vivascope 1500 and correspond to the stratum corneum,
the epidermis layer, the dermis-epidermis junction (DEJ)
and the upper papillary dermis. Each RCM image shows a
500 × 500µm field of view with 1000 × 1000 pixels. A set
of L = 45 women aged 60 years and over were recruited. All
the volunteers gave their informed consent for examination of
skin by RCM. According to the clinical evaluation performed
by a physician, volunteers were divided into two groups. The
first group was formed by 27 women with at least 3 lentigines
on the back of the hand whereas 18 women without lentigo
constituted the control group. Images were taken on lentigo
lesions for volunteers of the first group and on healthy skin on
the back of the hand for the control group. An examination of
each acquisition was performed in order to locate the stratum
corneum and the DEJ precisely in each image. Given the
large size of the images, we preferred to select and apply our
algorithm to patches of 250×250 pixels for each image to re-
duce the computational cost. Fig. 6 show the evolution of the
Markov chains convergence of the different estimated param-
eters (µ̂1, µ̂2, σ̂1, σ̂2,θ) for these RCM images. The obtained
results were then used to calculate the confusion matrix and
four indicators (sensitivity, specificity, precision, accuracy)
shown in Tables (2) and (3). These indicators are defined as
Sensitivity = TP/(TP+FN), Specificity = TN/(FP+TN), Preci-
sion = TP/(TP+FP), Accuracy = (TP+TN)/(TP+FN+FP+TN),

where TP, TN, FP and FN are the numbers of true positives,
true negatives, false positives and false negatives. The Table
(2) allows us to evaluate the classification performance of
the proposed strategy. The accuracy of the proposed method
equals 97.7%, which corresponds to a single mistake for the
lentigo patient #8. Fig. 7 shows that the texture of this mis-
classified image is not very destructed as for other lentigo
patients, and is visually similar to the texture of healthy pa-
tients. Fig. 8 shows examples of noisy RCM images and
their estimated true reflectivity. We can observe that the
estimated images have low intensity compared to the noisy
images which is due to the fact that the noise is multiplica-
tive. To assess the significance of our results, our algorithm
was then compared to the method presented in [16]. This
method consists in extracting from each RCM image a set of
39 analysis parameters (further technical details are available
in [27]) and to apply to these features a classification proce-
dure performed by the CART (Classification and Regression
Trees). The latter tested on the considered real RCM images
after training using a leave one out procedure. As shown in
Table (3), the obtained accuracy was 82.2% confirming the
good performance of the proposed classifier.

6. CONCLUSIONS

This paper presented a new unsupervised hierarchical Bayesian
strategy for reconstruction and classification of RCM images
as healthy or lentigo patients. The proposed Bayesian model
was introduced based on a gamma distribution for the multi-
plicative speckle noise and on various priors assigned to the
unknown model parameters in order to regularize the estima-
tion problem. An MCMC algorithm was then proposed to
jointly estimate the different parameters of the model, includ-
ing the true reflectivity of the images, the label vector allow-
ing the classification of the images in the classes “healthy”
or “lentigo” and finally the parameters of the speckle noise.
More precisely, a Metropolis-within-Gibbs sampler is used
to generate samples distributed asymptotically according to
the conditional posterior of this Bayesian model. These sam-
ples are then used to construct Bayesian estimators, such
as the maximum a posteriori estimator (MAP) or the mini-
mum mean square error (MMSE) estimator for the unknown
parameters of the model. The resulting algorithm was then
compared to the CART method. Simulation results conducted
on synthetic and real data allowed the good performance of
the proposed classifier to be appreciated. Future work in-
cludes the introduction of spatial correlation on the estimated
noiseless images to improve their quality.



(a) (b)

Fig. 3: Evolution of the convergence of the Markov chains for the different parameters µ̂1, µ̂2, σ̂1, σ̂2,θ estimated for the
synthetic data with SNRY = 0 dB.

(a) (b)

Fig. 4: Evolution of the convergence of the Markov chains for the different parameters µ̂1, µ̂2, σ̂1, σ̂2,θ estimated for the
synthetic data with SNRY = 10 dB.



(a) (b)

Fig. 5: Evolution of the convergence of the Markov chains for the different parameters µ̂1, µ̂2, σ̂1, σ̂2,θ estimated for the
synthetic data with SNRY = 20 dB.

Table 1: Performance of the proposed algorithm for denoising and classification of synthetic data for three corrupted data
SNRY = [0 dB, 10 dB, 20 dB].

SNRY = 0 dB SNRY = 10 dB SNRY = 20 dB

MSE2 SNR (dB) MSE2 SNR (dB) MSE2 SNR (dB)

µ1 0.56 30.12 1.54.10−4 62.72 2.63.10−5 70.4

µ2 0.95 21.42 1.89.10−5 73.24 6.64.10−5 67.79

σ2
1 2.91 1.01 0.015 18.07 0.011 25.7

σ2
2 7.14 2.57 4.58 5.42 0.006 22.07

θ 1.14.10−3 20.44 4.74.10−5 26.56 5.68.10−7 30.44

S 5.48 16.53 2.88 20.81 0.7093 26.87

Accuracy 91% 100% 100%

Accuracy (CART) 83% 100% 100%



(a) (b)

Fig. 6: Evolution of the convergence of the Markov chaines for the different parameters µ̂1, µ̂2, σ̂1, σ̂2,θ estimated for the real
RCM images.

Table 2: Classification performance on real data (45 patients)
using the proposed method.

Confusion matrix L̂ Ĥ
Sensitivity

Specificity

Lentigo 26 1 96.2 %

Healthy 0 18 100 %

Precision 100 % 94.7 %

Accuracy 97.7 %

Table 3: Classification performance on real data (45 patients)
using the CART method.

Confusion matrix L̂ Ĥ
Sensitivity

Specificity

Lentigo 24 3 88.8 %

Healthy 5 13 72.2 %

Precision 82.7 % 81.2 %

Accuracy 82.2 %

Fig. 7: Images from the patient #8 who is badly classified
compared to a healthy and lentigo patient (well classified).
One can observe more similarity between this patient and the
healthy one then with the lentigo.

Fig. 8: Examples of noisy images (at the depth 54 µm) and
their estimated true reflectivities.



7. APPENDIX: THE RANDOM-WALK
METROPOLIS-HASTINGS

The RWMH used in Algo. 1, consists in generating sam-
ples distributed according to the complex conditional distri-
bution of each parameter of interest. This is achieved using
the “J ′′ conditional distributions fj(.), for j ∈ 1, ..., J , and
their associated proposal distributions gj(.), ∀j. The first step
is to initialize the sample value for each parameter X(0)

j , for
j ∈ 1, ..., J . The main loop of the RWMH algorithm consists
of three components:

1. Generate a proposal (or a candidate) sampleXcand
j from

the proposal distribution gj
(
X

(cand)
j |X(i−1)

j

)
which

is the truncated Gaussian distributionNR+

(
X

(i−1)
j , ε2j

)
(generated using [28] ) for the parameters S,θ,σ2 and
a Gaussian distribution N

(
X(i−1)
µ , ε2µ

)
for µ.

2. Compute the acceptance probability via the acceptance
function α

(
X

(cand)
j |X(i−1)

j

)
based upon the pro-

posal distribution and the conditional density for each
parameter

where α = min

{
fj
(
X

(cand)
j

)
fj
(
X

(i−1)
j

) gj
(
X

(i−1)
j |X(cand)

j

)
gj
(
X

(cand)
j |X(i−1)

j

) , 1
}

3. Accept the candidate sample with probability α.

In order to maximise the efficiency of the algorithm, the
variances of the proposal distributions ε2j , have been adjusted
such that the acceptance rate is between 0.3 and 0.6 as sug-
gested in [17, 29].

8. APPENDIX: SAMPLING THE CONDITIONAL
DISTRIBUTIONS

The conditional distributions are obtained by multiplying the
likelihood with the different priors and by removing the mul-
tiplicative terms that do not depend on the variable of interest.
The algorithm iteratively updates each parameter by using its
conditional distribution. The results are detailed in the fol-
lowing paragraphs:

8.1. Sampling the parameter snl

We obtain the following conditional law

f
(
snl | zl = k, ynl, θl, σ

2
k, µk

)
∝ 1

(snl)
1/θ

exp

(
− ynl
snl θl

)

× exp

[
− 1

2 σ2
k

(snl − µk)
2

]
IR+(snl) (20)

Using the following proposal law (positive truncated Gaus-
sian [30])

g
(
x | stnl

)
∝

1√
2 π ε2

exp
[
− (x−stnl)

2

2 ε22

]
1− Φ

(
−stnl
ε2

) ,

where Φ is the cumulative normal distribution function
We obtain the following acceptance-rejection rule

st+1
nl =

{
s∗nl with prob min

{
f(s∗nl)
f(stnl)

g(stnl|s
∗
nl)

g(s∗nl|s
t
nl)

, 1
}

stnl else

with

f(s∗nl)

f(stnl)

g(stnl | s∗nl)
g(s∗nl | stnl)

=

(
s∗nl
stnl

)−ρl 1− Φ
(
−stnl
ε2

)
1− Φ

(
−s∗nl
ε2

)
×

exp

[
−2 ynl σ

2
k − s∗nl θl (s∗nl − µk)2

2 σ2
k s

∗
nl θl

+
2 ynl σ

2
k + stnl θl (stnl − µk)2

2 σ2
k s

t
nl θl

]
.

8.2. Sampling the parameter θl

We obtain the following conditional law

f (θl | ynl, snl, a, b) ∝
1

θ
N/θl+a+1
l

N∏
n=1

(
ynl
snl

) 1
θl

× exp

[
− 1

θl

(
N∑
n=1

ynl
snl
− b

)]
[Γ (1/θl)]

−N (21)

Using the following proposal law (positive truncated Gaus-
sian [30])

g
(
x | θtl

)
∝

1√
2 π ε1

exp
[
− (x−θtl )

2

2 ε21

]
1− Φ

(
−θtl
ε1

) .

where Φ is the cumulative normal distribution function
We obtain the following acceptance-rejection rule

θt+1
l =

{
θ∗l with prob min

{
f(θ∗l )
f(θtl )

g(θtl |θ
∗
l )

g(θ∗l |θ
t
l )
, 1
}

θtl else

With

f(θ∗l )

f(θtl )

g(θtl | θ∗l )

g(θ∗l | θtl )
=
θ∗l

(
− N
θ∗
l
−a−1

)

θtl

(
− N
θt
l

−a−1
)
Γ

(
1
θtl

)
Γ
(

1
θ∗l

)
N



×

(∏N
n=1

1
snl

) 1
θ∗
l

(∏N
n=1 ynl

) 1
θ∗
l
−1

(∏N
n=1

1
snl

) 1
θt
l

(∏N
n=1 ynl

) 1
θt
l

−1

 1− Φ
(
−θtl
ε1

)
1− Φ

(
−θ∗l
ε1

)


× exp

−
(∑N

n=1
ynl
snl

)
− b

θ∗l
+

(∑N
n=1

ynl
snl

)
+ b

θtl



8.3. Sampling the parameter µk

We obtain the following conditional law

f
(
µk | snl, σ2

k, µ0, σ0

)
∝ exp

[
(µk − µ0)2

2 σ2
0

]

×
exp

[
−
∑N
n=1

∑Lk
l=1 (snl−µk)2

2 σ2
k

]
(

1− Φ
(
−µkσk

))NLk (22)

Using the following proposal law (Gaussian [31])

g
(
x | µtk

)
∝ 1√

2 π ε3
exp

[
− (x− µtk)2

2 ε23

]
.

We obtain the following acceptance-rejection rule

µt+1
k =

{
µ∗k with prob min

{
f(µ∗

k)
f(µtk)

g(µtk|µ
∗
k)

g(µ∗
k|µ

t
k)
, 1
}

µtk else

with

f(µ∗k)

f(µtk)

g(µtk | µ∗k)

g(µ∗k | µtk)
=

1− Φ
(
−µ

t
k

σk

)
1− Φ

(
−µ

∗
k

σk

)
NLk

× exp

[
−
∑N
n=1

∑Lk
l=1 (snl − µ∗k)2

2 σ2
k

− (µ∗k − µ0)2

2 σ2
0

]

× exp

[∑N
n=1

∑Lk
l=1 (snl − µtk)2

2 σ2
k

+
(µtk − µ0)2

2 σ2
0

]

8.4. Sampling the parameter σ2
k

We obtain the following conditional law

f
(
σ2
k | snl, µk, α0, β0

)
∝

(
1
σ2
k

)NLk
2 +α0+1

(
1− Φ

(
−µkσk

))NLk

× exp

[
−
∑N
n=1

∑Lk
l=1 (snl − µk)2

2 σ2
k

− β0
σ2
k

]
(23)

Using the following proposal law (positive truncated Gaus-
sian [30])

g
(
x | (σ2

k)t
)
∝

1√
2 π ε4

exp
[
− (x−(σ2

k)
t)2

2 ε24

]
1− Φ

(
−(σ2

k)
t

ε4

) .

We obtain the following acceptance-rejection rule

(σ2
k)t+1 =

{
σ2∗
k with prob min

{
f(σ2∗

k )

f((σ2
k)
t)

g((σ2
k)
t|σ2∗

k )

g(σ2∗
k |(σ

2
k)
t)
, 1
}

(σ2
k)t else

with

f(σ2∗
k )

f((σ2
k)t)

g((σ2
k)t | σ2∗

k )

g(σ2∗
k | (σ2

k)t)
=

 1− Φ
(
−µk
σt
k

)
1− Φ

(
− µk√

σ2∗
k

)

NLk

×
(

(σ2
k)t

σ2∗
k

)NLk
2 +α0+1

exp

[
−
∑N
n=1

∑Lk
l=1 (snl − µk)2

2 σ2∗
k

− β0
σ2∗
k

]

× exp

[∑N
n=1

∑Lk
l=1 (snl − µk)2

2 (σ2
k)t

+
β0

(σ2
k)t

] 1− Φ
(
−(σ2

k)
t

ε3

)
1− Φ

(
−σ2∗

k

ε3

)


8.5. Sampling the parameter zl

We have

P
(
zl = k | snl, σ2

k, µk
)
∝

1
(
√
2 π σk)N

exp
[
−
∑N
n=1

(snl−µk)2
2 σ2

k

]
[
1− Φ

(
−µk
σk

)]N
(24)

We must first calculate the proportions associated with each
value of k using 24, and associate them intervals whose length
is proportional to these values in the interval [0,1].



We generate after a uniform variable as follows

u ∼ U[0, 1]

And finally, zl is updated by the value of k associated with
the interval selected by u.
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