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Wavelet-based statistical classification of skin
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Abstract: Detecting skin lentigo in re�ectance confocal microscopy images is an important and
challenging problem. This imaging modality has not yet been widely investigated for this problem
and there are a few automatic processing techniques. They are mostly based on machine learning
approaches and rely on numerous classical image features that lead to high computational costs
given the very large resolution of these images. This paper presents a detection method with very
low computational complexity that is able to identify the skin depth at which the lentigo can be
detected. The proposed method performs multiresolution decomposition of the image obtained at
each skin depth. The distribution of image pixels at a given depth can be approximated accurately
by a generalized Gaussian distribution whose parameters depend on the decomposition scale,
resulting in a very-low-dimension parameter space. SVM classi�ers are then investigated to
classify the scale parameter of this distribution allowing real-time detection of lentigo. The
method is applied to45healthy and lentigo patients from a clinical study, where sensitivity of
81:4%and speci�city of83:3%are achieved. Our results show that lentigo is identi�able at depths
between50� m and60� m, corresponding to the average location of the the dermoepidermal
junction. This result is in agreement with the clinical practices that characterize the lentigo by
assessing the disorganization of the dermoepidermal junction.

© 2017 Optical Society of America

OCIS codes:(100.0100) Image processing; (100.2960) Image analysis; (100.7410) Wavelets; (170.0170) Medical optics

and biotechnology; (170.0180) Microscopy; (170.6935) Tissue characterization.
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1. Introduction

Re�ectance confocal microscopy (RCM) is a non-invasive imaging technique that enables in-vivo
visualization of the epidermis down to the papillary dermis in real time [1,2]. The development of
this technology has taken about two decades and is currently granted the clinical status in various
countries [3]. Early investigations focused on the identi�cation of cell populations in di�erent
skin layers. Research on RCM images addressed three aspects: i) clinical studies to evaluate their
usefulness, ii) segmentation of nuclei, and iii) classi�cation of skin tissues. Later, interest has
moved to diagnosis applications (especially cancer) with the objective of improving the sensitivity
and speci�city [4,5]. Other applications of RCM have been reported such as treatment follow
up [6], surveillance of lentigo malign treatment [7,8], and guidance of cutaneous surgery [9].

At the time of this writing, a review of the literature on RCM imaging during the previous
semester shows about1500publications. Most of them report methods based on visual inspection
or ad'hoc quantitative measures. Research works reporting automatic techniques to process RCM
images are limited. Luck et al. [10] have been pioneers in developing automatic RCM image
processing. Their nuclei segmentation method was based on Gaussian image models for the
nuclei re�ectivity and the cytoplasm �bers intensity, and a Gaussian Markov random �eld for
spatial correlation. They proposed a Bayesian classi�cation algorithm to label tissues. Later,
Kurugol et al. developed a semi-automatic method to locate the dermoepidermal junction (DEJ)
using a statistical classi�er of texture features describing the brightness of basal cells [11,12].
Other methods were then investigated for RCM image proc essing. Koller et al. [13] proposed a
wavelet-based decision tree classi�cation method to distinguish benign and malignant melanocytic
skin tumors in RCM. The authors of [14] developed an automatic method to localize skin layers
in RCM images based on texture analysis. Hames et al. developed a logistic regression classi�er
to automatically segment the di�erent layers of the skin in RCM images [15, 16]. In [17],
SURF texture features were classi�ed with support vector machines (SVM) to identify skin
morphological patterns in RCM images. In [18], an algorithm based on neural networks was
developed to segment nuclei in RCM images. All these works use machine learning techniques
to classify texture features directly extracted from the image. More recently, a Bayesian method
to segment the dermoepidermal junction in 3D RCM images has also been proposed [19]. This
method is based on a marked Poisson process to detect locations of papillae, a spherical model
for their shape and a Gaussian model of texture features to capture their appearance. Determining
quantitative markers for tissue characterization in RCM images has not been widely investigated.
Raphael et al. [20] reported a characterization method of RCM images to assess photoageing. In
their study, features including the intensity, 2D wavelet coe�cient values, 2D Fourier coe�cients
and shapes were correlated with clinical data. They concluded that the image intensity and the
wavelet coe�cients have no signi�cant correlation, contrary to Fourier coe�cients and shapes.
In [21], Richtig et al. reported that solar lentigines show rete-edges with regular honeycomb
patterns and edged dermal papillae in RCM images. Based on these observations, we propose in
this paper to characterize solar lentigo using a parametric statistical model for textures associated
with RCM images. More precisely, we show that a quantitative parameter of this model allows
identifying lentigo in these images.

The proposed characterization method is based on a multi-resolution discrete wavelet decom-
position of RCM images. This technique has been considered for tissue characterization and
classi�cation in many practical applications using directly values of wavelet coe�cients [22� 25].
However, wavelet coe�cients have a large variability due to image details such as the range of inten-
sities, resolution and contrast. In addition, RCM images have a high resolution (50� 1000� 1000)
leading to processings with high computational complexity. The proposed method �ts within the
framework of machine learning. The aim is to address the two aforementioned limitations. A
generalized Gaussian distribution (GGD) model is proposed to represent wavelet coe�cients at
each depth of the skin. This model maps the data into a two-parameter space resulting in a strong



dimension reduction and allowing the implementation of a real-time lentigo detection algorithm.
Precisely, an SVM classi�er is trained o�ine for each depth. It allows detecting in real-time the
depth at which the lentigo is present. In addition, the multiresolution approach has the advantage
of alleviating the problem of dependency to the resolution of the image. Experiments with real
data from a clinical study show that the shape parameter of the GGD (alone) is a good indicator
to discriminate between lentigo and healthy tissues. These experiments show that lentigo is
identi�able at depths between50� m and60� m. The remainder of the paper is organized as
follows. Section 2 presents the proposed method for lentigo characterization and classi�cation.
It describes the wavelet decomposition process and the statistical model used for the wavelet
coe�cients. It also presents the proposed texture characterization method based on T-tests and the
Bayes factor and the SVM classi�cation protocol. Experimental results are presented in Section
3. Discussions reported in Section 4 summarize the �ndings of this study with some physical
interpretation. Conclusions and perspectives for future work are �nally reported in Section 5.

2. Proposed method

This section presents a new statistical method to detect lentigo in RCM and simultaneously
identify the depth where the lesion is best identi�able. The method has very low computational
cost and is suitable for real-time detection. LetYk 2 RP� N � N denotes a stack ofP images of
N � N pixels from a patientk. The tensorYk containsP images denoted asYk;1; : : : ;Yk;P , where
Yk;d is a grayscale image, oriented in the horizontal (en face) plane, associated with the skin
depthd. Image registration ensures that for all patients, images acquired at depthd correspond
to the same measure of depth in micrometers. This paper considers the problem of detecting a
lentigo in an image stackYk in real-time, while identifying the depth at which the lesion is best
identi�able. Formally, we de�ne a labelzk associated with the patientk that takes the value1
when the stack of imagesYk has a lentigo and0 otherwise. Letf Y¹0º

k gK0
k=1 andf Y¹1º

k gK1
k=1 denote

some expert annotated stacks of images corresponding to healthy and lentigo skins. We �rst
consider the identi�cation of theC most characteristic depths (1� C � P). We consider then
the classi�cation problem consisting of estimating the label of a collection ofC test images�
Yk;d1; : : : ;Yk;dC

	
, at a given range of depths»d1; dC ¼ � »1; P¼, denoted aszk using a training set

composed of the annotated characteristic depth images. The proposed method is organized in a
pipeline depicted in Fig. 1, whose components are detailed below.

Fig. 1. Block-diagram of the proposed method. It consists of 4 di�erent stages. First, a wavelet
decomposition is applied to the image. Second, GGD parameters¹�; � º are estimated, along
with the varianceV and the entropyH. Third, statistical tests are implemented to identify
characteristic depths. Finally, SVM classi�ers based on the GGD parameters classify tissues
as lentigo or healthy.

2.1. Wavelet decomposition

Inspecting visually the considered images, one can easily notice that the lentigo produces a
signi�cant change in the texture of the images (Fig. 2). At the DEJ, lentigines exhibit more
papillae whose shapes appear more irregular than on healthy skin, explaining this di�erence



in texture. As mentioned earlier, wavelet coe�cients have proven e�ective in capturing texture
properties in various applications [22� 25]. Following this approach, the �rst stage of our method
consists in applying a wavelet decomposition to RCM images.

A Daubechies wavelet �lter bank is used to decompose each imageYd . Such �lter bank is
computationally e�cient and can be implemented in real-time. The decomposition is performed
at four scales. At each scale, the result is a set of horizontal, vertical and diagonal coe�cients that
we denote byH , V andD, respectively. Letx¹bº

s denotes theL � 1 vector of the arbitrarily ordered
coe�cients obtained at the scales for the bandb 2 f H; V; Dg. Figure 3 shows an example of
decomposition of an RCM image at scale1. In this work, we are interested in identifying the
lentigo lesion in real-time based on these coe�cients. Given the large number of data, the next
section addresses the problem of dimension reduction.

2.2. Statistical modeling for dimension reduction

Designing a classi�cation method directly from the wavelet coe�cients would be ine�ective due
their variability (see [20]) and ine�cient due the computational cost of the required learning
algorithm. It is therefore necessary to map the wavelet coe�cients data into a lower dimensional
space. Such representation should uncover the hidden structure that discriminates healthy and
lentigo images. It should also allow the implementation of a simple classi�cation method for
rapid detection. In this work, as in [26� 29], we propose to represent the empirical distribution of
the coe�cients x¹bº

s ; 8b 2 f H; V; Dg; 8s 2 f1; : : : ;4g using a zero-mean generalized Gaussian
distribution (GGD). This distribution is known to capture the statistical properties of wavelets for
a large class of images [28,30]. It allows us to reduce the size of the features vector from several
thousand coe�cients to two parameters only, while capturing the variability of the coe�cients.
The GGD has the following probability density function

f ¹x; �; � º =
�

2� � ¹1• � º
exp

�
�

�
�
�
x
�

�
�
�
�
�

(1)

where� 2 R+ is a scale parameter,� 2 R+ is a shape parameter that controls the density
tail, and � ¹�º is the gamma function. We estimate the values of� and � for each set
X¹bº

s ; 8b 2 f H; V; Dg; 8s 2 f1; :::;4g by maximum likelihood estimation using a Newton-
Raphson algorithm [28].

Let � ¹dº
b;s =

h
� ¹dº

b;s; � ¹dº
b;s

i
be the¹1� 2º parameter vector estimated for depthd at scalesfrom band

b. For depthd and scales, the image is represented by a parameter vector� ¹dº
s =

n
� ¹dº

s;H ; � ¹dº
s;V ; � ¹dº

s;D

o

with s=1,...,4. We will denote as� ¹dº =
n
� ¹dº

1 ; : : : ; � ¹dº
4

o
the parameter vector associated with the

depth d. This proposed dimension reduction step results in representing a patient by an array
of parameters� =

�
� ¹1º; : : : ;� ¹Pº	 , giving a total number of parameters of only2 � 3 � 4 � P.

In addition, we will experimentally show that i) only few depths (C � P) will be necessary to
identify the lentigo; ii) one single parameter out of the two¹�; � º is su�cient to classify healthy
and lentigo patients; iii) scale 1 has enough information for lentigo identi�cation; and iv) the 3
bands are better considered jointly. This results in a more reduced dimension, allowing a patient
to be represented by only3 � C parameters. We will also show in Section 3.2 that the density
(1) �ts correctly (with good Kolmogorov-Smirnov test) the empirical distribution of the wavelet
coe�cients. The next section investigates a statistical test using the estimated parameters (�; � )
to assess their ability to discriminate healthy from lentigo patients.



Fig. 2. Typical images at the DEJ from six healthy (left to right and top to bottom#1,#5,#4,
#3,#2,#6) and six lentigo (#33,#38,#40,#31,#44,#37) patients. One can observe coarse
texture in the form of round shapes in the presence of lentigo. N.B. Values of the parameter
� are explained in section 4.



Fig. 3. Example of the �rst scale wavelet decomposition (right) of an RCM image (left). The
decomposition has four bands: Approximation (A), Horizontal (H ), Vertical (V), Diagonal
(D). Applying the same scheme to the approximation gives the next decomposition scale.
As explained in the text, our statistical method consists of estimating the GGD parameters
¹�; � º for bands¹H; V; Dº at each scale. These parameters are used for the characterization
and classi�cation of the underlying tissues.

2.3. Lentigo characterization by parametric T-tests

Before applying a classi�cation method, we performed a parametric T-test to the shape and scale
parameters� and� of the di�erent patients. This test allows assessing the statistical signi�cance
of these parameters to separate healthy and lentigo patients. Note that similar tests were also
performed with the entropy and the variance of the distribution. The corresponding results are
available in a technical report [31] and are not presented here for brevity. We consider a corpus
composed of images fromn healthy andm lentigo patients, annotated by a dermatologist. Let

� ¹Sº =
n
� ¹Sº

1 ; : : : ;� ¹Sº
n

o
and� ¹Lº =

n
� ¹Lº

1 ; : : : ;� ¹Lº
m

o
denote the parameters estimated for healthy

and lentigo patients, respectively. The maximum likelihood estimator (MLE) is known to be
asymptotically Gaussian and asymptotically e�cient [32, p.191]. Thus for large sample size, these
parameters can be assumed to be distributed according to Gaussian distributions. Figure 4 shows
that this assumption is reasonable for all the parameters. As an illustration, we consider here
the T-test for the parameter� at an arbitrary depth. Let� ¹Sº

b;s denote the mean of the parameters
n
� 1

b;s; : : : ; � n
b;s

o
estimated for the healthy patients for the bandb at the scales. Similarly, � ¹Lº

b;s is

the mean of the parameters
n
� 1

b;s; : : : ; � m
b;s

o
estimated for lentigo patients at the same depth and

scale. A classic two-sample T-test [33�35] has been used to compare the means� ¹Sº
b;s and� ¹Lº

b;s

H0
b;s : � ¹Sº

b;s = � ¹Lº
b;s; (2)

H1
b;s : � ¹Sº

b;s , � ¹Lº
b;s: (3)

In this study, we chose a probability of false alarmPF A = 0:05corresponding to a threshold
TPF A = 2:02to rejectH0

b;s. The p-value has also been calculated for each test. Then, the following



decision rules have been applied

ˆ Whenp value> 0:10 ! the observed di�erence is �not signi�cant�

ˆ Whenp value2 »0:05; 0:10¼! the observed di�erence is �marginally signi�cant�

ˆ Whenp value2 »0:01; 0:05» ! the observed di�erence is �signi�cant�

ˆ Whenp value< 0:01 ! the observed di�erence is �highly signi�cant�

Following [36], we also calculated the Bayes factor (BF) given by

BF =
©
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where � is the degrees of freedom,T the T-test score, � =  2•¹n+m�1º � 1 and  =
»¹T2

PF A • � º + 1¼¹n+mº•2. With this statistics the hypothesisH0
b;s is rejected whenBF >

p
� � .

In the experimentation section, we will show that� is the only parameter that can be used for
detecting lentigo at speci�c depths, meaning that� is a good tissue discriminator for those depths.

Fig. 4. Histograms of the scale and shape parameters, estimated from bandH at depth
54� m, with their means and standard deviations for all healthy and lentigo patients. Similar
histograms are obtained for other bands and scales.

2.4. Lentigo detection by SVM classi�cation

The last stage of the proposed method consists in classifying patients as lentigo or healthy based
on the GGD parameters. Precisely, the GGD parameters, the variance, and entropy associated with
theC most characteristic depthsd = ¹d1; : : : ;dC º, as identi�ed by the statistical test (presented
in Section 2.3), are considered. In our experiments, we choseC = 3 andd = ¹d1; d2; d3º. Many



classi�cation methods could be investigated to classify lentigo and healthy images. We present
here the results obtained with a linear SVM classi�er that is simple to implement and has shown
good performance in many applications. Our objective here is to con�rm that the parameter� is
able to classify tissues better than� , the variance (V), and the entropy (H). Therefore, we have
considered these parameters separately and have determined the corresponding classi�cation
performance. We also aim at identifying which scale provides better classi�cation and whether
there exists any preferred direction detail, horizontal, vertical or diagonal. The parameters were
estimated for each scales 2 f1; 2; 3; 4g from each bandb 2 f H; V; Dg. Let us consider the case
of � as an example. The estimated parameters� for each scale and band are summarized in the
following matrix

2
6
6
6
6
4

� H ;1 � H ;2 � H ;3 � H ;4
� V;1 � V;2 � V;3 � V;4
� D;1 � D;2 � D;3 � D;4

3
7
7
7
7
5

(5)

where� b;s =
�
� ¹d1º

b;s ; : : : ; � ¹dC º
b;s

�
is the vector of parameters estimated from theC images, for

scales and bandb. SVM classi�ers were designed for each element of the matrix(5), for
each row, each column and for the whole matrix (5) leading to a total of 20 classi�ers. In
other words, the scales were considered separately and jointly, and for each scale the bands
were also considered separately and jointly. The leave-one-out method was used to evaluate
the classi�cation performance. This operation was conducted1000times, and all results were
averaged in order to obtain averaged confusion matrix and performance indicators (sensitivity,
speci�city, precision and accuracy). In the experiments presented in Section 3.5, we will focus
on the20 SVM classi�ers that are based on the parameter� (results obtained with the other
parameters are available in [31]).

3. Experiments

3.1. Data

RCM imaging was performed using an apparatus Vivascope1500. The in-vivo images were
acquired from the stratum corneum, the epidermis layer, the dermis-epidermis junction (DEJ) and
the upper papillary dermis. Each RCM image shows a500� 500� m �eld of view (1000 � 1000
pixels). Forty-�ve women aged 60 years and over were recruited. The study was conducted
according to the principles of the declaration of Helsinki, and was approved by theComité de
Protection des Personnes Sud-Ouest et Outre-merIII in Bordeaux, France, No. CPP 2011/36.
All the volunteers gave their informed consent for examination of skin by RCM. According
to the clinical evaluation performed by a physician, volunteers were divided into two groups.
Twenty-seven (m = 27) women with at least3 lentigines on the back of the hand formed the
�rst group and eighteen (n = 18) women with no lentigo formed the control group. For each
volunteer, the acquisition on the same location was repeated twice, giving two stacks for each
patient. Images were taken on lentigo lesions for volunteers of the �rst group and on healthy skin
on the back of the hand for the control group. An examination of each acquisition was performed
in order to locate the stratum corneum and the DEJ precisely on each image. Consequently, our
database containedM = 45 patients. For each patient, we retained two stacks of25 RCM images
giving a total of2250images. Images were registered in order to correspond to the same depths.

3.2. Statistical analysis of wavelet coef�cients

This section illustrates the goodness of �t of the generalized Gaussian distribution for the wavelet
coe�cients of RCM images. Figure 5 compares the histograms of the wavelet coe�cients from
bandH with the estimated GGD distributions for the four scales at3 representative depths.
This �gure concerns two arbitrary healthy and lentigo patients, namely patients#6 and#38



respectively. It shows the good �t between the observed histograms and the estimated distributions
for all scales for both healthy and lentigo images. For scale4, the distribution misses the mode
but �ts well the shape. This can be explained by the small number of data since coe�cients
at this scale are very sparse and tend toward a �at histogram. Slight di�erences in the shape
of the distributions can be observed between healthy and lentigo patients, as illustrated by the
di�erences in the corresponding parameters� and� . These di�erences are at the basis of the
proposed characterization method as illustrated in the next experiments. Good results have also
been obtained for the bandsV andD. They are not shown here for brevity.

Figure 6 shows the quantitative assessment of the �t using the the Kolmogorov-Smirnov (KS)
test. The meanKSstatistic score of the whole population (45patients) has been calculated at
each depth for all scales. One notices the excellent scores with values of the KS statistic very
close to zero. Quantitatively, considering all depths and bands, the mean KS is0:008� 0:002for
scale#1; 0:009� 0:003for scale#2; 0:013� 0:004for scale#3; and0:027� 0:009for scale#4.
The increase of the score with the scale is due to sparser data.

3.3. Identi�cation of characteristic depths

Each of the2250images was decomposed according to the multi-resolution analysis presented
in Section 2.1 and GGD distributions were �tted to each scale at each band. Having acquired
two stacks of25 images for each patient, one of the two stacks was selected randomly for the
analysis. The mean� ¹Sº

b;s and� ¹Lº
b;s for � and� were calculated for healthy and lentigo images,

respectively. The curves showing the evolution of the average parameters with respect to the
image depth were �nally elaborated. To account for variability, the process of selecting one
stack for each patient was repeated300times and average curves with standard deviations were
calculated. Results are shown in Fig. 7, which clearly shows that, for all depths, bands and scales,
� is not characteristic. Conversely,� allows the discrimination of healthy and lentigo images
for all bands at scales1 to 3 for depths between31� m and76� m. Depths around50� m give the
largest discrimination. Results obtained with the bandsH andV for the fourth scale show large
variability due to the low quantity of data. Figure 2 shows two sets of images associated with six
healthy¹#1; #2; #3; #4; #5; #6º and six lentigo¹#31; #33; #37; #38; #40; #44º patients. As expected,
one notices that in the presence of lentigo images are more textured at the DEJ range of depths.

3.4. Statistical signi�cance with T tests

The parametric test described in Section 2.3 has been applied to the parameters of each band,
scale and depth to assess the signi�cance of the results. Figures 8 and 9 show the p-values
and Bayes factors associated with the two-sample t-tests conducted respectively with� and
� , at di�erent depths. The p-value has been represented in� log scale for readability. Figure
8 shows weak values of both p-value and Bayes factor con�rming that� cannot discriminate
healthy and lentigo images. Figure 9 shows high scores for both indicators for a range of depths.
Table 1 presents depths that giveT� higher than the threshold, hence con�rming the hypothesis
that the parameter� can be used to discriminate healthy and lentigo patients. This table also
shows the depths that provide p-values lower than the probability of false alarmPF A = 0:05
and their corresponding Bayes factor. It can be seen that for all depths whereH0

:;:¹� º is rejected,
p-values are lower than0:01. According to our decision rules, the results arehighly signi�cant
for depths49� m and60� m for scale one, with the highest score at54� m. These results are in
good agreement with the quantitative di�erences shown in Fig. 7. These results con�rm that
� gives a good test statistics for discriminating lentigo and healthy skin, especially at depths
around50� m. As mentioned in the introduction, lentigines are mainly characterized in RCM by
the disorganization of the dermoepidermal junction (DEJ). It is therefore not surprising to �nd
no signi�cant di�erence between healthy and lentigo skin in the stratum corneum and higher
epidermis layers (below40� m). Coherently, the parameter� is very discriminant at depths close



Fig. 5. Histograms of the wavelet coe�cients from bandH at the four scales and the
corresponding estimated GGD distributions. The �gure shows data from two arbitrary
healthy and lentigo patients (#6and#38respectively) at three representative depths (one
depth per column).



Fig. 6. Assessment of the GGD �t to wavelet coe�cients.Mean KS statistic for the whole
population at some selected depths, shown by scale and band. Scores are very good for all
con�gurations, although they increase with higher scales, due to sparser data.

to 50� m, which corresponds to the average location of the DEJ as shown in Fig. 10.

3.5. Performance of the SVM classi�cation

For the classi�cation, we processed separately three images (C = 3) corresponding to characteristic
depths¹49:5� m; 54� m; 58:5� mº for each patient. As described in section 2.4, a GGD distribution
was �tted at each scale¹#1; #2; #3; #4º to wavelet coe�cients form separate bands¹H; V; Dº. The
2 parameters¹�; � º were estimated, along with the variance and the entropy. For each of these
parameters, SVM classi�ers were trained and tested to classify patients into 2 classes referred to
as "lentigo" and "healthy". The leave-one-out cross-validation method was used to compute the
di�erent probabilities of errors. This method usesM � 1 images for training (whereM = 45is the
number of patients in the database) and the remaining image for testing. This operation was run
N = 1000times. For each experiment, we considered only images from one acquisition out of the
available two stacks (for each patient). The obtainedN results were used to calculate the average
confusion matrix shown in Table 2 and to evaluate average indicators (sensitivity, speci�city,
precision and accuracy). This table allows us to assess the classi�cation performance for each
scale and for the three bands separately and jointly. The results show that the classi�cation of
healthy and lesion tissues is similar for the di�erent combinations of detail-bands, and thus we
recommend to use the joint bands¹H; V; Dº. Regarding the di�erent scales used for the analysis,
Table 2 shows that results from the �rst scale are slightly better than those obtained with the other
scales. Thus we recommend to use the �rst scale of the wavelet decomposition. Our method
was then compared to the method presented in [13], named here Koller. This method consists of
extracting39 features from each RCM image (more technical details are available in [37]) and
applying a classi�cation procedure based on a regression tree (CART). We tested this method on
the real RCM images using a leave one out procedure. As shown in Table 3, the accuracy (75:5%)
obtained with the Koller method is smaller than the one obtained with the proposed method and



leads to three additional misclassi�ed patients. In addition, this result is obtained at the expense
of higher complexity given the number of parameters (39for Koller as compared to our method).

For illustration purpose, Fig. 11 shows examples of classi�ed RCM images using the proposed
methodology. The results concerning the other parameters (� , Entropy, Variance) were not
convincing. Thus, they are not reported in this paper.

Table 1. Depths whereH0
:;:¹� º is rejected (t-score> T0:05 = 2:02); the corresponding p-value

and Bayes factor (BF) are shown. The �rst row gives intervals of depths (min depth to max
depth) where T-scores are signi�cant. The second row shows depths giving highest T-scores
(maximal T-score� 10%). The third row shows the depths corresponding to the maximal
T-score. P-values and Bayes factors corresponding to each depth are shown below.

scale1 scale2 scale3 scale4
min max min max min max min max

T ¹� º
� > 2:02

depths(� m) 14 90 18 90 18 90 18 94
T-score 2.10 2.22 2.13 2.27 2.10 2.20 2.14 2.11
p-value 0.040 0.037 0.040 0.030 0.040 0.037 0.038 0.040

BF 11.00 13.40 7.18 15.23 23.10 29.70 13.24 10.20

Highest T ¹� º
�

depths(� m) 48 60 48 63 48 68 48 68
T-score 4.80 4.84 4.54 4.73 4.02 4.07 3.99 4.26
p-value 0.0002 0.0002 0.0004 0.0003 0.002 0.002 0.003 0.001

BF 877 970 891 949 454 460 359 435

MaximalT ¹� º
�

depths(� m) 54 54 59 59
T-score 5.11 4.94 4.69 4.41
p-value 0.00008 0.00016 0.00031 0.00074

BF 1246 1459 436 507

Table 2. Confusion matrices of SVM classi�ers based on the vector of parameters
¹� 49:5� m; � 54� m; � 58:5� mº from the three characteristic depths. Twenty di�erent classi-
�ers have been tested with the leave-one-out method for theH; V; D, andH; V; D bands at
the four scales1; 2; 3; 4 separately and combined¹1; 2; 3; 4º. Se and Sp stand for the sensitivity
and speci�city. One notices the good accuracy for all bands (there is no preferred direction,
justifying the jointH; V; D band) especially with the �rst scale.

� Scale 1 Scale 2 Scale 3 Scale 4 All scales

Confusion matrix L ĥ
Se

Sp
L̂ ĥ

Se

Sp
L̂ ĥ

Se

Sp
L̂ ĥ

Se

Sp
L̂ ĥ

Se

Spf

H

Lentigo 22 5 81.4 % 21 6 77.7 % 20 7 74% 19 8 70.3 % 21 6 77.7 %

Sain 3 15 83.3 % 4 14 77.7 % 4 14 77.7% 6 12 66.6 % 5 13 72.2 %

Precision 88% 75% 84% 70% 83.3 % 66.6 % 76% 60% 80.7 % 68.4 %

Accuracy 82.2% 77.7% 75.5 % 68.8 % 75.5 %

V

Lentigo 22 5 81.4% 20 7 74% 20 7 74% 20 7 74% 20 7 74%

Sain 3 15 83.3% 4 14 77.7% 4 14 77.7% 5 13 72.2 % 5 13 72.2 %

Precision 88% 75% 83.3 % 66.6 % 83.3% 66% 80% 65% 80% 65%

Accuracy 82.2% 75.5 % 75.5 % 73.3 % 73.3%

D

Lentigo 22 5 81.4 % 21 6 77.7 % 20 7 74% 19 8 70.3 % 21 6 77.7 %

Sain 3 15 83.3 % 5 13 72.2 % 5 13 72.2% 5 13 72.2% 5 13 72.2 %

Precision 88 % 75 % 80.7 % 68.4 % 80% 65% 79.1 % 61.9 % 80.7 % 68.4 %

Accuracy 82.2 % 75.5 % 73.3 % 71.1 % 75.5 %

HVD

Lentigo 22 5 81.4% 21 6 77.7% 20 7 74% 19 8 70.3% 21 6 77.7 %

Sain 3 15 83.3% 4 14 77.7% 4 14 77.7% 5 13 72.2% 5 13 72.2 %

Precision 88% 75% 84% 70% 83.3% 66% 79.1% 61.9% 80.7 % 68.4 %

Accuracy 82.2% 77.7% 75.5 % 71.1 % 75.5 %



Fig. 7. Evolution of the average parameters�̂ and�̂ throughout the depth for the di�erent
bands at all scales. Values of� are too similar for healthy and lentigo patients and cannot be
used for discrimination. The parameter� shows signi�cant di�erence for depths between
31� m and76� m, with maximal di�erence at around50� m. Our conclusion is that this
parameter� can discriminate healthy and lentigo skin tissues.



Fig. 8. P-value (in� log scale) and Bayes factor of the T test for� . The weak scores show
that� is clearly not a discriminant between healthy and lentigo images.

Fig. 9. P-value (in� log scale) and Bayes factor (BF) of the T test for� . The third row
contains zooms on the lower scores of the BF to clarify the signi�cance threshold. Strong
scores can be seen for depths between31� m and76� m. Highest scores are obtained with
depths around50� m. This con�rms that� is a good discriminant function that can be used
to separate healthy and lentigo images at these depths.



Fig. 10. Characteristics depths (found to be between 48um and 63um according to the T-test)
and DEJ depths associated with the 45 patients.

Table 3. Confusion matrix of SVM classi�ers based on Koller method using the same training
and testing conditions as in Table.2. Features from images of the three characteristic depths
have been concatenated in one feature vector. Slightly higher accuracy (77:7%) has been
obtained when Koller's method is applied only to depth54� m.

Koller method

Confusion matrix L̂ Ĥ
Sensitivity
Speci�city

Lentigo 21 6 77.7 %
Healthy 5 13 72.2 %

Precision 80.7 % 68.4 %
Accuracy 75.5 %

4. Discussion

The experimental results, with skin types 2 and 3, have shown that the lentigo phenomenon can
be characterized using re�ectance confocal microscopy images. Statistical tests demonstrated
that it can be identi�ed with su�cient statistical signi�cance at depths between50� m and60� m.
Classi�cation of patients with GGD statistical models associated with wavelet transforms of
images acquired at these characteristic depths show that the parameter� can discriminate healthy
and lentigo tissues. Other parameters including the scale parameter� , the variance and the
entropy failed to achieve the same objective. Formally,� 2 R+ is the shape parameter of the
GGD distribution. When� ! 0, the GGD curve has a picked shape around the mode. However,
when� is large, the curve has a rounded and more spread mode. Lower� indicate sparser wavelet
coe�cients. In our case, healthy images have values of� larger than those of lentigo (Fig.5).
One possible interpretation of this result is related the visual structure of the dermal papillae
in the lentigo images. In the case of lentigo, the papillae of the dermis grow higher and more
dense towards the surface, with irregular shapes, making the DEJ junction larger. In our data, the
DEJ starts at the mean depth of13� m for lentigo and25� m for healthy patients, with similar



Fig. 11. Examples of RCM images of lentigo and healthy patients classi�ed by the SVM
classi�er.



ending depths. As a consequence, images taken at the middle of the dermoepidermal junction
contain more widespread and irregularly shaped papillae in lentigo than in healthy patients. The
papillae appear as irregular shapes surrounded by bright borders that represent concentration of
melanocytes (Fig. 2). These patterns of shapes are captured by the distribution of the wavelet
coe�cients as regular coarse textures with lower values of� . In comparison, the fewer and
regular round shaped papillae that appear in the healthy images give slightly larger values of� .
This numerical di�erence is statistically su�cient to distinguish healthy from lentigo patients. As
shown in Fig.2,� decreases with the increase of the density and shape irregularity of the papillae
in the image. Please notice that the value of� shown in this �gure correspond to bandH at scale
#1. A similar behavior of this parameter is obtained for the other bands and scales. Finally, it
is interesting to note that the proposed method would not discriminate lentigo from other skin
lesions or types if their corresponding images have similar texture patterns, which is one of its
limitations.

5. Conclusions

This paper investigated the potential of using the statistical properties of wavelet coe�cients
of RCM images to characterize the skin lentigo. The proposed method computed the scale and
shape parameters of a generalized Gaussian distribution associated with each band and each scale
of images acquired at di�erent depths. These parameters were then used to distinguish between
healthy and lentigo tissues. A parametric T-test was performed to assess the statistical signi�cance
of the observed di�erences between healthy and lentigo images. The proposed hypothesis test was
run on a database of2250real images associated with45 patients. SVM classi�ers were created
and tested for the di�erent parameters. The results of t-test and SVM classi�cation were found in
perfect agreement. In conjunction, these results showed that the shape parameter� is well suited
to discriminate healthy and lentigo tissues. They showed also that there is no preferred direction,
and thus that it is better to use the joint vector¹H; V; Dº with the �rst scale to provide a good
characterization of RCM images. Interestingly, for images from the back of the hand, this study
found that the shape parameter� of the generalized Gaussian distribution characterizes lentigo at
depths around50� m corresponding to the location of the dermoepidermal junction. This result is
in agreement with the clinical fact that lentigo signi�cantly disorganizes this layer of the skin.
Future work includes the consideration of di�erent skin types and other pigmented skin lesions
that lead to the destruction of the dermoepidermal junction such as the melanoma. It would be
also interesting to analyze the distributions of RCM images directly in the image domain. The
associated parameters could complement the statistical model de�ned by the scale and shape
parameters of the generalized Gaussian distribution associated with the wavelet coe�cients
considered in this paper.
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