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Introduction
The hyperspectral imaging is a rapidly growing domain of the fact for which

we try to extract more and more information of every pixel. The hyperspectral
image is obtained by considering the same scene observed in various lengths of
electromagnetic wave. By grouping all these images we obtain a cube of data which
will be used for the analysis and the treatment to be made. Every pixel of this cube
is represented by a spectrum for which the number of samples corresponds to the
number of the considered wavelengths. One of the most treatments in hyperspectral
imaging is the spectral unmixing which assumes that the vectors of data (i.e, spectra
associated with the pixels of the image) are a linear combination of a number given
by present pur spectres in the image to be treated. The spectral unmixing is the
operation which consists in decomposing the spectre of a pixel into one collection
of spectral components called pure spectra (endmembers) with coefficients named
abundances which represent the proportions of every endmember in the analyzed
pixel [1].

We find several Bayesian parametric methods of linear unmixing in the litera-
ture [2], [3]. On the other hand, the number of papers speaking about unmixing
with Bayesian nonparametric methods is more limited. The work made in this stage
consists in studying a method of linear unmixing based on a Bayesian non parame-
tric method. The algorithm requires defining a priori distributions for the unknown
parameters (the abundances and the endmembers) and estimating this latter from
their posteriors. As the usual Bayesian estimator such as the estimator of maximum
a posteriori (MAP) and the estimator of the minimum mean square error (MMSE)
have no simple analytical expression, we suggest the use of Markov Chain Monte
Carlo (MCMC) methods. The purpose of the MCMC methods is to simulate samples
according to a distribution of interest (the posterior distribution of the unknown pa-
rameters of the model) and to use these simulated samples to estimate the unknown
parameters of the studied model.

The present work consists of the study of the various models based on the Diri-
chlet process and then applied to the hyperspectral imaging for the linear unmixing
according to the various formulations exposed in the literature. The report is orga-
nized as follows :
• Chapter 1 : How many classes should I use in my mixture model ? This
question regularly exercises scientists as they explore their data. Most scientists
address this question by first fitting several models, with different numbers of
clusters or factors, and then selecting one using model comparison metrics.
In the first chapter we describe Bayesian nonparametric (BNP) models. The
BNP approach is to fit a single model that can adapt its complexity to the
data. Furthermore, BNP models allow the complexity to grow as more data
are observed.
• Chapter 2 : The second chapter deals with the Dirichlet distribution which
forms our first step toward understanding the Dirichlet process model (DPM).
The DPM model provides a distribution on distributions with many attractive
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properties and is widely used in practice.
• Chapter 3 : Mixture models are often used to describe data which is distri-
buted according to some set of underlying mechanisms where each data point
is assumed to be independently generated by only one of these underlying dis-
tributions. The third chapter deals with the Dirichlet process mixture model
which extends the basic mixture model by applying a Dirichlet process prior to
the mixing proportions. After that, we describe three processes (Pólya’s Urn,
the Chinese Restaurant and the Indian Buffet) which allow us to generate
samples from a Dirichlet process.
• Chapter 4 : The fourth chapter deals with mixing models in hyperspectral
imagery. Mixed pixels are a mixture of more than one distinct substance.
• Chapter 5 : In the fifth chapter, we study two applications of the Dirichlet
process mixture model (DPMM). The first application deals with the problem
of clustering and the second application concerns the problem of unmixing in
hyperspectral imagery.Spectral unmixing is the procedure by which the mea-
sured spectrum of a mixed pixel is decomposed into a collection of constituent
spectra, or endmembers, and a set of corresponding fractions, or abundances,
that indicate the proportion of each endmember present in the pixel. Endmem-
bers normally correspond to familiar macroscopic objects in the scene, such as
water, soil, metal, or any natural or man-made material.
• Chapter 6 : In the sixth chapter, we give some results when considering
synthetic and real data. We begin by generating a mixture of (3,4 and 5)
two-dimensional Gaussians and we represent the estimated mixture and the
estimated number of gaussians in the mixture. In the second experiment, we
test our algorithm on a data set generated from 3, 4, 5 and 6 endmembers.
We represent respectively the data points, the true and the estimated end-
members, the true and estimated spectra and the estimation of the number of
endmembers. We end up by applying our algorithm to the true image (Moffet).
We estimate the number of endmembers and we show the estimated spectra.
The performances of the algorithm has been compared via several criteria as
Mean square error (MSE), Spectral angle distance (SAD), Root mean square
error (RMSE), Global mean square error (GMSE) and the Reconstruction
error (RE). The latter one is classically used to evaluate the quality of an
unmixing method in the case of real hyperspectral images.
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1 Nonparametric Bayesian Analysis
A statistical model tries to explain the data in terms of the properties of the

system that generated it. Probabilistic models assume that the data have been ge-
nerated from an unknown probability distribution which may or may not follow
a general parametric form. The model structure M is defined in terms of random
variables, referred collectively as the parameters, ψ. The model structure and the
parameters are chosen such that the model can accurately represent the generative
process that gave rise to the observed data. The Bayesian approach treats the para-
meters as being random quantities and therefore involves placing distributions over
them, representing the prior belief. The prior is updated in light of the observa-
tions, giving the posterior. We denote the prior distribution of the parameters by
P (ψ|M) [4], [5].

The likelihood function is the probability density of the observed data X conditio-
ned on the unknown model parameters ψ, therefore it is a function of ψ, L(ψ|M) =
P (X|ψ,M). The Bayes’ rule yields the posterior density :

P (ψ|X,M) = P (ψ|M) P (X|ψ,M)
P (X|M) . (1)

The denominator P (X|M) obtained by integrating over the parameters,

P (X|M) =
∫
P (ψ|M) P (X|ψ,M) dψ (2)

is referred to as the evidence or the marginal likelihood. Note that this quantity does
not depend on the parameters and it only appears as a normalizing constant for the
posterior distribution of ψ. Therefore, we generally write

P (ψ|X,M) ∝ P (ψ,M) P (X|ψ,M) (3)

meaning the posterior for the parameters is proportional to the prior times the li-
kelihood. Thus, the posterior distribution expresses the updated belief about the
parameters ψ after observing data. A family of prior distributions F is said to be
conjugate to the likelihood if the posterior is also distributed according to F. Using
conjugate priors, the integral in the equation (2) can be analytically evaluated. Ho-
wever, the conjugate family is not rich enough to always match the prior belief. In
this case, one would need to use priors from a larger family. Using a prior distribu-
tion from a more general family will typically result in the integral in the equation
(2) being intractable, hence increased computational complexity in posterior calcu-
lations.

We referred to the set of all unknown variables in a model as the parameters, denoted
by ψ. The term parametric model refers to the model that has a form that is expres-
sed by a finite number of parameters. The likelihood P (X|ψ) may be assumed to be
of a known simple form such that obtaining the posterior distributions of interest
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is straightforward. An alternative to parametric models is the nonparametric mo-
dels which are models with (countably) infinitely parameters. Nonparametric models
achieve high flexibility and robustness by defining the prior to be a nonparametric
distribution from a space of all possible distributions.

2 Dirichlet Distribution and Dirichlet Process

2.1 Dirichlet Distribution
The Dirichlet distribution forms our first step toward understanding the Dirichlet

process model (DPM) model. The Dirichlet distribution is a multi-parameter gene-
ralization of the Beta distribution and defines a distribution over distributions, i.e.,
the result of sampling a Dirichlet is a distribution on some discrete probability space.

The Dirichlet distribution with a base distribution m = {m1,m2, .....,mn} and a
concentration parameter α on π = {π1, π2, ....., πn} is given by the formula [6]

P (π;αm) = Γ(∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

παi−1
i = Γ(α)∏n

i=1 Γ(αmi)

n∏
i=1

παmi−1
i (4)

where ∑n
i=1 πi = 1 , ∑n

i=1mi = 1 , α = ∑n
i=1 αi and mi = αi/α

The mean and the covariance of the Dirichlet distribution are given by :

E [πi] = α mi∑n
j=1 α mi

= mi (5)

V [πi] = mi (1−mi)
1 + α

(6)

C [πi, πj] = −mi mj

1 + α
. (7)

By examining the equation (5), it can be seen that as α, the concentration parame-
ter, is varied, the mean of the Dirichlet distribution does not change. In contrast,
as α is increased, the covariance decreases. α is a precision parameter that controls
how the distribution is concentrated around m.

When n = 2, the Dirichlet distribution is equivalent to the beta distribution. De-
noting the beta density’s two hyperparameters by α and β, let π ∼ Beta(α, β)
indicates that

P (π|α, β) = Γ(α + β)
Γ(α) Γ(β)π

α−1 (1− π)β−1 α, β > 0. (8)
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2.2 Dirichlet Process
It is often difficult to find simple parametric models which adequately describe

complex, realistic datasets. Nonparametric statistical methods avoid assuming res-
tricted functional forms, and thus allow the complexity and accuracy of the inferred
model to grow as more data is observed. Strictly speaking, nonparametric models
are rarely free of parameters, since they must have a concrete, computationally trac-
table representation. In Bayesian statistics, nonparametric methods typically learn
distributions on function spaces, and thus effectively involve infinitely parameters.
Complexity is controlled via appropriate prior distributions, so that small datasets
produce simple predictions, while additional observations induce richer posteriors.

To motivate nonparametric statistical methods, consider De Finetti’s representa-
tion of N infinitely exchangeable random variables [7] :

p (x1, x2, x3, . . . , xN) =
∫

Θ
p (θ)

N∏
i=1

p (xi|θ) dθ. (9)

In general, this decomposition is only guaranteed when Θ is an infinite dimensional
space of probability measures. Many Bayesian nonparametric methods thus involve
families of computationally tractable distributions on probability measures [8].

In a fundamental paper on a Bayesian approach to nonparametric problems, Fer-
guson [9] defines a random process, called the Dirichlet process, whose samples
functions are almost surely probability measures, and he derives many important
properties of this process. The Dirichlet process provides a distribution on distribu-
tions with many attractive properties, and is widely used in practice.
Given the definition of the Dirichlet Distribution, the Dirichlet process can be defi-
ned as [10] :

Let π be a set, and B a σ-field of subsets of π. Let α be a finite,
nonnull, nonnegative, finitely additive measure on (π,B). We say a ran-
dom probability measure G on (π,B) is a Dirichlet process on (π,B)
with parameter α and G0, if for every k = 1, 2, . . . . . . and measurable
partition (B1,B2,B3, . . . ,Bk) on π, the joint distribution of the random
probabilities (G(B1), G(B2), G(B3), . . . , G(Bk)) is a Dirichlet distribution
with parameters α and (G0(B1), G0(B2), G0(B3), . . . , G0(Bk)) that is

(G(B1), G(B2), G(B3), . . . , G(Bk)) ∼ D(αG0(B1), αG0(B2), . . . , αG0(Bk))
(10)

We denote the random probability measure G that has a Dirichlet Pro-
cess distribution with concentration parameter α and base distribution
G0 by :

G ∼ D(α,G0) (11)
Some authors define the Dirichlet Process using a single parameter by
combining the two parameters to form the random measure α = αG0.

Internship of Master II 10 Abdelghafour HALIMI
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3 Dirichlet Process Mixture Model
Mixture models are often used to describe data which is distributed according

to some set of underlying mechanisms where each data point is assumed to be
independently generated by only one of these underlying distributions [11]. Finite
mixture models can be expressed using the following equation (12) :

p(xi|π,θ) =
M∑
k=1

πkp(xi,θk) (12)

where π = {π1, π2, ....., πM} is the set of mixing proportions for component distri-
butions such that ∑M

k=1 πk = 1 and πk > 0 and θ = {θ1, θ2, ....., θM} where θk is a
vector of parameters for the kth component distribution for k = 1, ....,M.

The Dirichlet process mixture model extends the basic mixture model by applying a
Dirichlet Process prior to the mixing proportions. This extension allows for a coun-
tably infinite number of mixture components [12], [13], [14].

Consider N data points, {x1, x2, . . . , xN} each of which are assumed to have been
independently generated by some distribution F(θi) where θi is the vector of pa-
rameters that defines the process generating observation xi. Under the Dirichlet
process mixture model, θi is generated by some unknown distribution G. Then, G
is distributed according to the Dirichlet process, D(α,G0) where G0 is the base dis-
tribution and α is the concentration parameter. Therefore, the complete model can
be written as [14], [15] :

xi ∼ F(θi)
θi ∼ G

G ∼ D(α,G0). (13)
The figure 1 represents a Dirichlet process mixture model.

Figure 1 – Graphical representation of a Dirichlet process mixture model.

The data is assumed to be generated from a distribution parameterized by θ. The
distribution of the parameter θ has a Dirichlet process prior with base distribution
G0 and concentration parameter α.

Internship of Master II 11 Abdelghafour HALIMI
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3.1 Generating Samples from a Dirichlet Process
How do we generate samples from a Dirichlet process ? In this section we describe

the Pólya’s Urn process, the Chinese restaurant process, and The Indian Buffet
Process.

3.1.1 Pólya’s Urn

A sequence {θi}n1 , n ≥ 1 of random variables with values in X is a Pólya sequence
with parameters α and G0 if for every θi ∈X

θi ∼ G

and

(θn+1|θ1, θ2, . . . , θn) ∼ Gn = αG0 +∑n
i=1 δ(θi)

α + n
(14)

where δ(θ) denotes the unit measure concentrating at θ. Imagine X to be the set
of colors of balls in an urn, with α being the initial number of balls, and G0 the
distribution of the colors of balls such that initially there are α G0 balls of color θ.

The sequence {θi}n1described by the equation (14) represents the result of successive
draws from the urn where after each draw, the ball drawn is replaced and another
ball of the same color is added to the urn.

Figure 2 – Visualization of the urn-drawing scheme.

Blackwell and MacQueen [16] establish the connection between the Dirichlet process
and Pólya sequences by extending the Pólya urn scheme to allow a continuum of
colors. They show that for the extended scheme, the distribution of colors after n
draws converges to a Dirichlet process as n→∞.

More formally, they state that if {θi}n1 is a sequence of random variables construc-
ted such that θ1 has distribution G0 and equation (14) holds, then

– Gn converges almost surely as n→∞ to a random discrete distribution G.
– G has a D(α G0) distribution
– The sequence {θi}n1 is a sample from G.

Internship of Master II 12 Abdelghafour HALIMI
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For small values of α, Gn has only a few atoms whereas for large values, the
atoms are numerous, concentrating on the G0 distribution.

The figure 3 represents the DPM using the Pólya’s urn process.
Note that G has been integrated out, and the parameters θ are drawn without

Figure 3 – Graphical representation of the DPM using the Pólya’s urn process
representation.

referring to G with the Pólya’s urn scheme.

3.1.2 The Chinese Restaurant Process

The Pólya’s urn scheme is closely related to the Chinese restaurant process
(CRP) which is a distribution on partitions. The CRP is a sequential process that
uses the metaphor of a Chinese restaurant with an infinite number of circular tables,
each with infinite seating capacity. Customers arrive sequentially at the initially
empty restaurant [4].
The first customer x1 sits at the first table. For n ≥ 1, suppose n customers have al-
ready entered the restaurant and are seated in some arrangement, occupying a total
of K tables. Customer xn+1 chooses to sit next to customer xl with equal probability
1/(n + α) for each 1 ≤ l ≤ n, and to sit alone at a new table with probability
α/(n+ α). Denoting the table that customer i sits at as ci,

P (cn+1 = k|c1, c2, . . . , cn) = α

α + n
δ(K + 1) +

K∑
k=1

nk
α + n

δ(k) (15)

or

P (cn+1 = k|c1, c2, . . . , cn) =


nk
α+n if k ≤ K

(i.e, k is a previously occupied table)
α

α+n otherwise

(i.e, k is a next unoccupied table)


where nk denotes the number of customers seated at table k.
After n customers have entered the restaurant, we have a partitioning of the custo-
mers {xi}n1 , the partitions being defined with the variables ci. Ignoring the labeling
of the tables and focusing on only the resulting partitioning, the customers are ex-
changeable. That is, the order in which they enter the restaurant does not play a
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role in the resulting partitioning.
Suppose that independently of the sequence {xi}n1 we paint each occupied table by
picking colors φk from the distribution over the spectrum of possible colors, G0. Let-
ting θi denotes the color of the table occupied by the ith customer, the distribution
of the colors would be given as

(θn+1|θ1, θ2, . . . , θn) ∼ α

α + n
G0 +

K∑
k=1

nk
α + n

δ(φk) (16)

Note that we have the same sequence of {θi}n1 as defined by the Pólya’s urn scheme
given in the equation (14). Hence {θi}n1 is a sample from G ∼ DP (α,G0).

Figure 4 – Graphical representation of the DPM model using the Chinese Restau-
rant Process.

In the CRP framework, it becomes clear that the parameter assignments (coloring of
the tables) is independent from the partitioning of the data (seating arrangement).
This independence is shown in the graphical model in Figure 4 for the DPM using
the CRP representation.

3.1.3 The Indian Buffet Process

In the Indian buffet process (IBP), N customers enter a restaurant one after ano-
ther. Each customer encounters a buffet consisting of infinitely many dishes arranged
in a line. The first customer starts at the left of the buffet and takes a serving from
each dish, stopping after a Poisson (α) number of dishes as his plate becomes over-
burdened. The ith customer moves along the buffet, sampling dishes in proportion
to their popularity, serving himself with probability mk

i
, where mk is the number of

previous customers who have sampled a dish. Having reached the end of all previous
sampled dishes, the ith customer then tries a Poisson (α

i
)th number of new dishes.

We can indicate which customers chose which dishes using a binary matrix Z with
N rows and infinitely many columns, where zik = 1 if the ith customer sampled the
kth dish.
The following figure 5 shows a matrix generated using the Indian Buffet Process [17].
The first customer tried 17 dishes. The second customer tried 7 of those dishes, and
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Figure 5 – A binary matrix generated by the Indian buffet process.

then tried 3 new dishes. The third customer tried 3 dishes tried by both previous
customers, 5 dishes tried by only the first customer, and 2 new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the
figure 5.
Even though the buffet is infinite, it follows from the construction that each cus-
tomer has a finite number of dishes with probability one, and thus, given a finite
number of observations, we expect only a finite number of features to be present.
The buffet analogy also highlights two important properties of the Indian Buffet
Process. First, we expect the number of sampled dishes − or active features − to
grow as the number of observations increases. Second, we expect there to exist a few
popular features occurring in many observations and many rare features expressed
in only a few observations.
Less obvious from the buffet construction is that the Indian Buffet Process is also
infinitely exchangeable, that is, the order in which the customers attend the buffet
as no impact on the distribution of Z up to permutations in the columns, and that
columns are also independent [18].
Recall that in the buffet construction, the customers simply chose dishes based so-
lely on their popularity. Once we note that permuting the columns should not affect
the model, it is convenient to think of a canonical ordering for which all Z matrices
that are the same up to column−permutations are equivalent. Griffiths [17] define a
canonical representation called the left-ordered form of Z, written as [Z] = lof([Z]).
The left-ordered form first takes the binary sequence of 0′s and 1′s for each column
referred to as a history h), treating the first customer as the most significant bit,
and converts the binary sequence to a number. Thus, each column − or feature
−receives a single value. We then order the columns by descending value.

4 Mixing models in hyperspectral imagery
In hyperspectral imagery, mixed pixels are a mixture of more than one distinct

substance [1]. Spectral unmixing is the procedure by which the measured spectrum of
a mixed pixel is decomposed into a collection of constituent spectra, or endmembers,
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and a set of corresponding fractions, or abundances, that indicate the proportion of
each endmember present in the pixel. Endmembers normally correspond to familiar
macroscopic objects in the scene, such as water, soil, metal, vegetation, etc.

4.1 The linear mixing model
Analytical models for the mixing of disparate materials provide the foundation

for developing techniques to recover estimates of the constituent substance spectra
and their proportions from mixed pixels. The basic premise of mixture modeling is
that within a given scene, the surface is dominated by a small number of distinct
materials that have relatively constant spectral properties. These distinct substances
(e.g., water, grass, mineral types) are called endmembers, and the fractions in which
they appear in a mixed pixel are called fractional abundances. If most of the spectral
variability within a scene is a consequence of endmembers appearing in varying
proportions, it logically follows that some combination of their spectral properties
can model the spectral variability observed by the remote sensing system.

Figure 6 – Illustration of linear mixing.

The mathematical formulation for the linear mixing model can be expressed as [2] :

y =
R∑
k=1

αkmk + n = Mα+ n (17)

where :
• y = (y1, ...,yL)T is a vector of size L which represents the spectrum of a pixel
of the image ;
• mk = (mk1, ...,mkL)T is the kth endmember ;
• L represents the number of spectral bands ;
• R represents the number of endmembers ;
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• n is a white gaussian noise with zero mean and covariance matrix σ2IL ;
• M = (m1, ...,mR) is the matrix of size L×R of the endmembers ;
• α = (α1, ..., αR)T is the vector of size R× 1 of the abundances.

The abundances contained in the vector α = (α1, ..., αR)T satisfy the following
constraints :

αk ≥ 0,∀k ∈ 1, ..., R and
R∑
k=1

αk = 1. (18)

4.2 The nonlinear mixing model
Nonlinear mixing models assume a randomly distributed, homogeneous mixture

of materials, with multiple reflections of the illuminating radiation(see figure 7).
These models represent the underlying physics at the foundation of hyperspectral
phenomenology. Nonlinear models constitute a new interesting field of research for
hyperspectral imagery and have shown interesting properties for abundance estima-
tion, e.g., for scenes including mixtures of minerals, orchards, or vegetations.This
model is generally written as follows [19], [20] :

y = f (α,M ) + n, (19)

where f is an invertible nonlinear function.
In our study we considered only the linear mixing model.

Figure 7 – Illustration of nonlinear mixing.
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5 Applications of the Dirichlet Process Mixture
Model (DPMM)

In this part we will see two applications of the Dirichlet process mixture model
(DPMM). The first application deals with the problem of clustering and the second
application concerns the problem of unmixing in hyperspectral imagery.

5.1 Clustering using DPMM
In this part we apply the Dirichlet Process to a Gaussian mixture model given

by equation (20) for clustering :

p(xi|π, θ) =
M∑
i=1

πiF (x|µi,Σi) (20)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or fea-
tures), πi = 1, ....,M are the mixture weights, and F (x|µi,Σi), i = 1, ....,M are
the component Gaussian densities. Each component density is a D-variate Gaussian
function of the form,

F (x|µi,Σi) = 1
(2π)D/2 |Σi|

1
2
exp

{
−1

2 (x− µi)
′
Σ−1
i (x− µi)

}
(21)

where |.|, µi, and Σi denote respectively the determinant operator, the mean vector
and the covariance matrix. The mixture weights satisfy the constraint ∑M

1 πi = 1,
where M is the number of the Gaussians. The complete Gaussian mixture model is
parameterized by the mean vectors, covariance matrices and mixture weights from all
component densities. These parameters are collectively represented by the notation,

θ = {πi, µi,Σi} , i = 1, · · · ,M

As shown by Neal [15], the likelihood of a data point given component parameters
equation (21) can be combined with the probability of a class label given all other
labels in equation (16). Then, the Gibbs sampler can be used to sample indicator
variable values and component parameter values. The conditional probabilities for
an indicator variable are defined in equation (22),

P (ci = cj for some j 6= i|c−i, xi, θ) = C
n−i,j

α +N − 1 × F
(
xi|θcj

)
P (ci 6= cj ∀ j 6= i|c−i, xi) = C

α

α +N − 1

∫
F (xi|θ)G0(θ) dθ (22)

C = 1
Σj( n−i,j

α+N−1 F (xi|θcj)) + α
α+N−1

∫
F (xi|θ)G0(θ) dθ (23)

where α is the concentration parameter and C a normalizing constant computed by
equation (23).
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The Markov chain for the Gibbs sampler using the conditionals in equation (22)
consists of all the indicator variables c and all component distribution parameters
θ [15].
For the test, we assume there is a mixture of two-dimensional Gaussian variables,
where the means and the covariances are unknown. But we know that the cova-
riances are diagonal and isotropic. Therefore what we don’t know are the mean µ,
and the scalar factor σ . We use the Dirichlet process to model the problem and
do clustering, the purpose of using Dirichlet process here is that we do not want
to specify the number of components in the mixture, but instead give a prior over
1 to infinite. We assume it has a conjugate prior for µ and σ. Since the likelihood
F (x|µi,Σi) is Gaussian, the conjugate prior which is called here the base distribution
G0(θ) should have a Normal-Gamma distribution.
Given hyperparameters λ,β,τ > 0 and ν the conjugate prior G0(., .) is

G0(µ, σ|λ, β, τ, ν) =


σλ−1 exp(−σ

β
)

Γ(λ) βα (στ2π )1/2 exp(−στ
2 (µ− ν)2) where σ > 0

0 otherwise


More specifically, the marginal distribution of the precision parameter σ has Gamma
distribution

f(σ|λ, β) =


σλ−1 exp(−σ

β
)

Γ(λ) βα where σ > 0
0 otherwise


and the marginal distribution of the mean parameter µ has a multivariate Student-t
distribution with 2λ degrees of freedom, location ν and precision λ β τ :

f(µ|λ, β, τ, ν) =
√
βτ

2π
Γ(2λ+1

2 )
Γ(λ) (1 + τβ

2 (µ− ν)2)−
2λ+1

2

which are our hyperparameters prior distributions. We can then define our model
to be the following :

xi|µi, σi ∼ N(µi, σiI2)
µi, σi|G ∼ G(µ, σ)
G ∼ DP (α G0(µ, σ))

G0 ∼ NG(µ, σ|λ, β, τ, ν)
where DP (α G0(µ, σ)) is the Dirichlet process with base measure G0 and spread
α, and G is a random distribution drawn from the DP. Our posteriors distributions
which are based on the observations for these parameters are defined as follows :
The posterior distribution for the base distribution G0(θ) is defined like this :

G0(θ|x) = F (x|θ) ×G0(θ)
F (x) (24)

G0(µ, σ|x) = F (x|µ, σ) ×G0(µ, σ|λ, β, τ, ν)
F (x) (25)
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where F (x|µ, σ) ∝ N(µ, σ) and G0 ∝ NG(µ, σ|λ, β, τ, ν)
hence

G0(µ, σ|x) = NG(µ, σ|λ′ , β ′ , τ ′ , ν ′)

and the posteriors marginal of the parameters µ, σ are :

f(σ|x) =
∫
G0(µ, σ|x)dµ (26)

f(σ|x) = Gamma(σ|λ′ , β ′)

f(µ|x) =
∫
G0(µ, σ|x)dσ (27)

f(µ|x) = T2λ′ (µ|ν
′
,
β
′

λ′τ ′
)

with
λ
′ = λ+ n

2

β
′ = ( 1

β
+ 1

2∑n
i=1(xi − x)2 + τn(x−ν)2

2(τ+n)

)−1

ν
′ = τν + nx

τ + n

τ
′ = τ + n

To determine the unknown parameters of the models of mixture, we use the Bayesian
estimators like the MAP(maximum a posteriori) or the MMSE (Minimum mean
square error).The calculation of the MMSE estimator raises problems of integration
which we solve by using a MCMC method. We begin first by reminding the principle
of the MMSE and MAP estimators before passing in the generation of samples
following the a posteriori distributions mentioned previously.

5.1.1 Bayesian estimators

Estimator of the maximum a posteriori By definition the estimator of the
MAP is calculated by maximizing the density a posteriori f(θ|y)

θ̂MAP = maxθ f(θ|y)
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Estimator of the MMSE We are interested in this section in the estimator
minimizing the mean square error

[(
θ − θ̂MMSE

)T (
θ − θ̂MMSE

)]
. We show that :

θ̂MMSE = E [θ|y] =
∫
θ f(θ|y) dθ

So, the calculation of the estimator MMSE requires the determination of the ave-
rage of the law a posteriori. Unfortunately, this integral still has no simple analytical
expression. This problem is not appropriate to our model but constitute one of the
major difficulties of the Bayesian inference. Diverse techniques were developed to
approach such integral. The method used in this study is based on the MCMC
methods. MCMC allows us to generate samples distributed according to the a pos-
teriori distribution of interest. After a number of iterations, and whatever is the
initial value of the chain θ(0), The generated vectors θ(i) are approximately distribu-
ted according to the a posteriori law f(θ|y). The estimator MMSE is then computed
by the empirical average of the last elements of the chain.

θ̂MMSE = 1
Nr

Nr∑
i=1

θ(i+Nbi)

where Nbi represents the period of burning of the algorithm and Nr the number of
samples to obtain a good digital approximation.

5.1.2 Gibbs Sampler

There are two essential techniques introduced into the literature to generate
distributed samples following an a posteriori law : the algorithm of Metropolis-
Hastings and the Gibbs sampler. We suggest here to use a Gibbs sampler allowing
to generate a suite θ(i) distributed according to the a posteriori law f(θ|y). For this,
we have to sample the parameters θk according to their conditional laws by basing
itself on the algorithm 1 [21].
The algorithm 1 describes the stages of the algorithm of Gibbs sampling for DPMM
used here.
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Algorithm 1 Gibbs sampling for Dirichlet process mixture model

Given α(t−1),
{
θ

(t−1)
k

}K
k=1

and
{
c

(t−1)
i

}n
i=1

from the previous iteration, sample a new

set of
{
θ

(t)
k

}K
k=1

and
{
c

(t)
i

}n
i=1

as follows :

1. Set c = c(t−1), α = α(t−1)

2. For i = 1, ...., n
a) Remove data item xi from the cluster ci since we are going to sample a new

ci for xi.
b) If xi is the only data in its current cluster, this cluster becomes empty after

step (2.a). This cluster is then removed, together with its parameter, and
K is decreased by 1.

c) Re-arrange cluster indices so that 1, ..., K are active (i.e ,non-empty)
d) Draw a new sample for ci from the following probabilities :

p(ci = k, k ≤ K) ∝ nk,−i
n+ α− 1F (xi|θ(t−1)

k ) nk,−i =
∑
j 6=i

δ(ci − k)

p(ci = K + 1) ∝ α

n+ α− 1

∫
F (xi|θ)G0(θ)dθ

e) If ci = K + 1, we get a new cluster. Index this cluster as K + 1, sample a
new cluster parameter φi from H(φi|xi) defined as :

H(φ|xi) = F (xi|φi)×G0(φi)∫
F (xi|φ)×G0(φ) dφ

assign it to θK+1 and increase K by 1.
3. For k = 1, ...., K

Sample cluster parameter of each cluster θk from the following distribution :

θ
(t)
k ∝ G0(θk|x) Likelihood (x(t)

k |θ
(t−1)
k )

4. Set c(t) = c
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5.2 Unmixing using Dirichlet Process Mixture model
A hyperspectral image is a three-dimensional data-cube with one spectral and

two spatial dimensions .The spectral dimension corresponds to wavelengths in which
radiance is measured for each pixel [1]. Each pixel in a hyperspectral image is a spec-
tral vector of radiance values. The purpose of unmixing in hyperspectral imagery
is to determine the spectrally pure signatures (patterns) in a hyperspectral image
that can be used to represent all the pixels in the image via a convex, linear mo-
del. Although similar to clustering, it differs in the sense that the endmembers
represent vertices of a simplex that surround the pixels (at least partially) in D
dimensional space, where D is the data dimensionality. Several algorithms exist for
endmember detection, however, few simultaneously determine the number of end-
members [22], [23]. The proposed algorithm provides a method of determining the
number of endmembers while simultaneously estimating endmember spectra and
proportion maps for an image. The number of endmembers is determined by using
the Dirichlet process. The algorithm provides a novel application of the Dirichlet
process where, rather than determining means and variances of standard distribu-
tions like in the previous example of clustering , the algorithm determines vertices
of a simplex which surround the pixels and the coefficients for a convex combina-
tion to describe each pixel in terms of the vertices (endmembers). This algorithm is
initialized with a single endmember and more endmembers are incrementally added
as needed. The proposed method determines the endmembers which surround the
pixels and the proportion of each endmember in every pixel. The Dirichlet process
is applied to determine the number of endmembers needed. This method differs
from the DPMM since each pixel has an influence on every endmember whereas
the DPMM partitions the pixels causing them to only influence the distribution
parameters from which they are assumed to be generated. Furthermore, the pro-
posed method does not only determine distribution parameters which instead, the
algorithm determines a unique proportion vector for each pixel. The linear mixing
model for hyperspectral imagery assumes that every pixel in a scene is a convex
combination of the endmembers in the scene [1], [24].

xi =
M∑
k=1

pik ek + εi i = 1, · · · , N (28)

where N is the number of pixels, M is the number of endmembers, εi is an error term,
pik is the proportion of endmember k in pixel i , and ek is the k(th) endmember [1].
The proportions satisfy the following constraints.

pik ≥ 0 k = 1, · · · ,M
M∑
k=1

pik = 1 (29)

Often, spectral unmixing is performed to determine the proportion values pik , in
addition to determining the spectral signatures of the endmembers ek [1]. Following
this linear mixing model the likelihood for a given pixel can be defined in terms of
the corresponding proportion vector and set of endmembers.
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p(xi|pi,E, σX) = 1
(2πσ2

X)D2
exp

{
− 1

2σ2
X

(xi − piE)T (xi − piE)
}

(30)

where pi is the proportion vector for the i(th) pixel, E is matrix containing all end-
member values, D is the dimensionality of the pixel, and σ2

X is the variance. A
conjugate Inverse-Gamma distribution with parameter (ν2 ) and (γ2 ) is chosen as
prior distribution for σ2

X

σ2
x|ν, γ ∼ IG(ν2 ,

γ

2 ) (31)

The hyperparameter ν will be fixed to ν = 2 [25]. On the other hand, ν will be ran-
dom and adjustable hyperparameter, whose prior distribution is defined below. The
prior for ν is noninformative Jeffreys’prior [26], which reflects the lack of knowledge
regarding this hyperparameter

f(γ) ∝ 1
γ
1R+(γ) (32)

where 1R+() is the indicator function defined on R+.
Then as done in [24], encouraging the endmembers to have a tight fit around the
data set can be done by using a sum of squared distances term.

p(E|, σE) = 1
(2πσ2

E)D2
exp

− 1
2σ2

E

M−1∑
k=1

M∑
l=k+1

(ek − el)T (ek − el)

 (33)

where D is the dimensionality of the data, E is the matrix of endmembers, ek is
the k(th) endmember, and M is the number of endmembers.
The proposed algorithm uses the Dirichlet Process as a method to update proportion
values for each endmember and incrementally add endmembers as needed. The pro-
portion update for each endmember is done iteratively by incrementally increasing
the weight of elements in the proportion vector. Given an initial proportion vector
pi for pixel xi , we will draw δi (The incrementation step or the new abundance
coefficient) following the Beta distribution δi ∼ Beta(a, b) such that the mean of
this distribution will be equal to the reconstructed error ( the error between the
pixel xi and the reconstructed pixel piE ) as follows :

meani = (xi − piE)T (xi − piE)
β

(34)

where E is the set of endmembers, β is a step-size parameter used to normalize
meani between 0 and 1 and the variance of this distribution will be equal to a num-
ber chosen manually.
Using δi a set of potential proportion vectors,

{
p1
i , p

2
i , . . . , p

M+1
i

}
, updates is compu-

ted as follow :

pji =
{ 1

1+δi [pi1, . . . , pij + δi, . . . , piM ] j ≤M
1

1+δi [pi1, . . . , . . . , piM , δi] j = M + 1 (35)
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The probability of selecting an update is computed using a Dirichlet Process prior
and the likelihood of the data point given the updated proportion vector and end-
member values. If the update increases the error, the probability is set to zero.

p(pji |xi,P,E, σX , σE) =
{
C mj

α+N−1 F1:M(pji ) j ≤M

C α
α+N−1 FM+1(pM+1

i ) j = M + 1 (36)

where

F1:M(pji ) =
{
p(xi|pji ,E, σX) p(E|σE) if

∥∥∥xi − pjiE
∥∥∥ ≤ ‖xi − piE‖

0 otherwise
(37)

FM+1(pM+1
i ) =

∫
p(xi|pi,E, eM+1, σX) p(E|σE) p(eM+1|E, σE) deM+1 (38)

mj = ∑N
i=1 pij, C is a normalizing constant, N is the number of pixels, σx and σE are

the variances for the data likelihood and the prior on the endmembers, respectively,
M is the number of endmembers with associated proportion values greater than
zero, and P is the matrix of proportion values with pij the proportion value for the
ith pixel of the jth endmember. If we take the prior on p(eM+1|E, σE) equal to this :

p(eM+1|E, σE) = 1
(2πσ2

E)D2
exp

{
− 1

2σ2
E

M−1∑
k=1

(ek − eM+1)T (ek − eM+1)
}

(39)

The integral in (38) can be calculated as follows :

FM+1(pM+1
i ) =

∫
p(xi|pi,E, eM+1, σX) p(E, σE) p(eM+1|E, σE) deM+1

p(eM+1|E, σE) = 1
(2πσ2

E)D2
exp

{
− 1

2σ2
E

M−1∑
k=1

(ek − eM+1)T (ek − eM+1)
}

p(eM+1|E, σE) = 1
(2πσ2

E)D2
exp

{
− 1

2σ2
E

(
M−1∑
k=1

eTk ek − 2 ∗ eTM+1

M−1∑
k=1

ek +MeTM+1eM+1)
}

p(eM+1|E, σE) = 1
(2πσ2

E)D2
exp

{
− 1

2σ2
E

(MeTM+1eM+1 − 2 ∗ eTM+1

M−1∑
k=1

ek +
M−1∑
k=1

eTk ek)
}

p(eM+1|E, σE) = 1
(2πσ2

E)D2
exp

− 1
2σ2
E

M

(eTM+1eM+1 − 2 ∗ eTM+1

∑M−1
k=1 ek
M

+
∑M−1
k=1 eTk ek
M

)


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= 1
(2πσ2

E)D2
exp

− 1
2σ2
E

M

[
(eM+1 −

∑M−1
k=1 ek
M

)2 − (
∑M−1
k=1 ek
M

)T (
∑M−1
k=1 ek
M

) +
∑M−1
k=1 eTk ek
M

] =

1
(2πσ2

E)D2
exp

{
− M

2σ2
E

[
(eM+1 −

∑M−1
k=1 ek
M

)2
]}

exp

{
− M

2σ2
E

[∑M−1
k=1 eTk ek
M

− (
∑M−1
k=1 ek
M

)T (
∑M−1
k=1 ek
M

)
]}

= 1
M

D
2
exp

{
− M

2σ2
E

[∑M−1
k=1 eTk ek
M

− (
∑M−1
k=1 ek
M

)T (
∑M−1
k=1 ek
M

)
]}

N

(∑M−1
k=1 ek
M

,
σ2
E

M

)

p(eM+1|E, σE) = C N

(∑M−1
k=1 ek
M

,
σ2
E

M

)

p(xi|pi,E, eM+1, σX) =

= 1
(2πσ2

X)D2
exp

− 1
2σ2

X

(xi −
M∑
j

pijej − pi(M + 1)eM+1)T (xi −
M∑
j

pijej − pi(M + 1)eM+1)



p(xi|pi,E, eM+1, σX) = 1
(2πσ2

X)D2
exp

{
− 1

2σ2
X

(h− pi(M + 1)eM+1)T (h− pi(M + 1)eM+1)
}

= 1
(2πσ2

X)D2
exp

{
− 1

2σ2
X

[
hTh− 2(pi(M + 1)eM+1)Th+ (pi(M + 1)eM+1)T (pi(M + 1)eM+1)

]}

= 1
(2πσ2

X)D2
exp

{
− 1

2σ2
X

[
p2
i (M + 1) eTM+1eM+1 − 2pi(M + 1) eTM+1h+ hTh

]}

= 1
(2πσ2

X)D2
exp

− 1
2σ2
X

p2
i (M+1)

[
eTM+1eM+1 −

2
pi(M + 1) eTM+1h+ hTh

p2
i (M + 1)

]

= 1
(2πσ2

X)D2
exp

− 1
2σ2
X

p2
i (M+1)

[
(eM+1 −

h

pi(M + 1))2 − hTh

p2
i (M + 1) + hTh

p2
i (M + 1)

]
p(xi|pi,E, eM+1, σX) = 1

(2πσ2
X)D2

exp

− 1
2σ2
X

p2
i (M+1)

(eM+1 −
h

pi(M + 1))2



p(xi|pi,E, eM+1, σX) = 1
(pi(M + 1))D2

N

(
h

pi(M + 1) ,
σ2
X

p2
i (M + 1)

)
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p(xi|pi,E, eM+1, σX) = A N

(
h

pi(M + 1) ,
σ2
X

p2
i (M + 1)

)

FM+1(pM+1
i ) =

∫
p(xi|pi,E, eM+1, σX) p(E, σE) p(eM+1|E, σE) deM+1

FM+1(pM+1
i ) = p(E, σE)

∫
C N

(∑M−1
k=1 ek
M

,
σ2
E

M

)
A N

(
h

pi(M + 1) ,
σ2
X

p2
i (M + 1)

)
deM+1

FM+1(pM+1
i ) = A. C. p(E, σE)

∫
N

(∑M−1
k=1 ek
M

,
σ2
E

M

)
N

(
h

pi(M + 1) ,
σ2
X

p2
i (M + 1)

)
deM+1

N
(
µT1 ,Σ1

)
. N

(
µT2 ,Σ2

)
= N

(
µT = (Σ−1

1 µ1 + Σ−1
2 µ2)ΣT , ΣT = (Σ−1

1 + Σ−1
2 )−1

)
(see Appendices about the Product of n Multivariate Gaussian PDFs).

Updates to a proportion vector are performed by sampling an updated propor-
tion vector using the probabilities defined by (37). However, prior to considering a
new endmember, the proportion vector given only the current endmembers should
be estimated. This prevents adding unnecessary endmembers when the current end-
members can adequately describe the data point. Therefore, estimating a proportion
vector for a data point occurs in two stages. The first stage estimates the endmem-
bers without considering the addition of a new endmember. This step is performed
by sampling updated proportion vectors from (37) with α set to zero. After many
iteration, the proportion vector is updating once with a non-zero value for α.
After updating a single proportion vector, endmember values are updated. End-
member values are determined by minimizing the likelihood of the dataset given
the endmembers and the proportions. This is done by minimizing the posterior
p(E|X) = p(E|σe) ∗

∏N
i=1 p(xi|pi, E, σx) with respect to E. The calculation is as

follows :

p(ek|X) = p(X |ek) p(ek) =
[
N∏
i=1

p(xi|ek)
]
p(ek)

p(E|, σE) = 1
(2πσ2

E)D2
exp

− 1
2σ2

E

M−1∑
k=1

M∑
l=k+1

(ek − el)T (ek − el)


p(E|, σE) = 1

(2πσ2
E)D2

exp

− 1
2σ2

E

1
2

M∑
k=1

M∑
l 6=k

(ek − el)T (ek − el)

 = 1
(2πσ2

E)D2
exp

{
− 1

2σ2
E

1
2 a

}

a =
M∑
k=1

(M − 1) eTk ek + 2 eTk

 M∑
l 6=k

el

+
M∑
l 6=k

eTl el



a = (M − 1)
M∑
k=1

eTk ek + 2 eTk

(∑M
l 6=k el

)
(M − 1) +

∑M
l 6=k eTl el

(M − 1)


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a = (M−1)
M∑
k=1


ek −

(∑M
l 6=k el

)
(M − 1)

T ek −
(∑M

l 6=k el
)

(M − 1)

+
∑M
l 6=k eTl el

(M − 1) −
(∑M

l 6=k el)T (∑M
l 6=k el)

(M − 1)2


so

p(ek|, σE) ∝ N

( ∑M
l 6=k el

(M − 1) , 2 σ2
E

(M − 1) I
)

p(xi|E) ∝ 1
(2πσ2

X)D2
exp

− 1
2σ2

X

(xi −
M∑
j

pijej)T (xi −
M∑
j

pijej)

 = 1
(2πσ2

X)D2
exp

{
− 1

2σ2
X

β

}

β = (xi −
M∑
j 6=k

pijej − pikek)T (xi −
M∑
j 6=k

pijej − pikek) = (h− pikek)T (h− pikek)

β = (h− pikek)T (h− pikek) = p2
ik(

h

pik
− ek)T ( h

pik
− ek)

so
p(xi|ek) ∝ N

(
h

pik
,
σ2
X

p2
ik

I

)

p(X |ek) =
N∏
i=1

p(xi|ek) ∝
1

√
2πN

√∏N
i=1

σ2
X

p2
ik

exp

− N∑
i=1

(ek − h
pik

)2

2 σ
2
X

p2
ik



p(X |ek) =
N∏
i=1

p(xi|ek) ∝
1

√
2πN

√∏N
i=1

σ2
X

p2
ik

exp

− N∑
i=1

(ek − h
pik

)T (ek − h
pik

)

2 σ
2
X

p2
ik


N∑
i=1

(ek − h
pik

)T (ek − h
pik

)

2 σ
2
X

p2
ik

=

 N∑
i=1

1
2 σ

2
X

p2
ik

 eTk ek −

 N∑
i=1

( h
pik

)T
σ2
X

p2
ik

 ek +

 N∑
i=1

( h
pik

)T ( h
pik

)

2 σ
2
X

p2
ik



N∑
i=1

(ek − h
pik

)T (ek − h
pik

)

2 σ
2
X

p2
ik

= B


eTk ek −

∑N
i=1

( h
pik

)T

σ2
X

p2
ik


B ek +

∑N
i=1

( h
pik

)T ( h
pik

)

2
σ2
X

p2
ik


B


so

p(X |ek) ∝ N


µT =

∑N
i=1

( h
pik

)T

σ2
X

p2
ik


B ,Σ = B−1I


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⇒ p(ek|X) ∝ p(X |ek) p(ek) = N
(
µT1 ,Σ1

)
. N

(
µT2 ,Σ2

)
so (see Appendices about the Product of n Multivariate Gaussian PDFs)

⇒ p(ek|X) ∝ N
(
µT = (Σ−1

1 µ1 + Σ−1
2 µ2)ΣT , ΣT = (Σ−1

1 + Σ−1
2 )−1

)
We know that the MMSE and the MAP of a normal distribution are its mean

and we have found that the posterior of p(E|X) follows a normal distribution so we
can generate our endmembers following their means µi [27].

This algorithm proceeds in an online manner, in which a single pixel’s propor-
tion vector is updated followed by an update of the endmember values. A simple
initialization for E is to randomly select a single datapoint from the dataset. In this
case, each data point will only have a single proportion value of 1.
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6 Experiments and Results

6.1 Test for different mixtures of Gaussians
The algorithm 1 was tested on the data’s points which were generated following

this model :
p(xi|π, θ) =

M∑
i=1

πi F (x|µi,Σi)

which was a mixture of two-dimensional Gaussians with mean prior as a multiva-
riate Student-t distribution and variance prior as a gamma distribution. With this
hyperparameters λ = 5 , β = 0.9 , τ = 0.05 , ν = 0 and the concentration
parameter α = 0.000001 the result was as follows :

Mixture of 3 two-dimensional Gaussians : number of points=200 ; Proba=[0.3
0.2 0.5]

Figure 8 – Posterior distribution of the estimated number of gaussians of the
mixture.

Figure 9 – True and estimated mixture.
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Mixture of 4 two-dimensional Gaussians : number of points=200 ; Proba=[0.4
0.1 0.3 0.2]

Figure 10 – Posterior distribution of the estimated number of gaussians of the
mixture.

Figure 11 – True and estimated mixture.
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Mixture of 5 two-dimensional Gaussians : number of points=200 ; Proba=[0.4
0.1 0.3 0.05 0.15]

Figure 12 – Posterior distribution of the estimated number of gaussian of the
mixture.

Figure 13 – True and estimated mixture.
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Means(µi) precision(σ) Mixture weights(πi)
MSE2 (µ) SAD (µ) MSE2 (σ) SAD (σ) GMSE2 RMSE

Mixture of 3 1 0.0018 0.1095 0.0024 0 1.0e-04*0.25 0.0041
two-dimensional 2 0.0155 0.01 0.0025 0 0

gaussians 3 0.0025 0.0212 0.0013 0 1.0e-04*0.25
1 0.0001 0.0008 0.0006 0 0 0

Mixture of 4 2 0.0689 0.0605 0.0001 0 0
two-dimensional 3 0.0021 0.0086 0.0015 0 0

gaussians 4 0.0007 0.0245 0.0003 0 0
1 0.00001 0.0001 0.0006 0 0.0576 0.1364

Mixture of 5 2 0.0464 0.0462 0.0001 0 0.0036
two-dimensional 3 0.0027 0.0635 0.0001 0 0.0196

gaussians 4 0.0182 0.0103 0.0008 0 0.0121
5 0.0074 0.0070 0.0016 0 0.0001

Table 1 – Means µ, precision σ and Mixture weights(πi) for different numbers of
mixture of Gaussians

The Table 1 represents the means µ, the precision σ and Mixture weights(πi) for a
number M of gaussians
MSE2 (µ) = ‖µ̂i − µi‖2 i = 1, . . . ,M
MSE2 (σ) = ‖σ̂i − σi‖2 i = 1, . . . ,M

SAD (µ) = arccos
(
〈µ̂i , µi〉
‖µi‖ ‖µ̂i‖

)
SAD (σ) = arccos

(
〈σ̂i , σi〉
‖σi‖ ‖σ̂i‖

)
GMSE2 = (π̂i − πi)2

RMSE =
√

(1/M) ∗ ‖π̂ − π‖2, π is the vector of probabilities of the mixture.

MSE, GMSE and RMSE stand respectively for the mean square error, the glo-
bal mean square error and the root mean square error.

The spectral angle distance (SAD) measures the angle between the actual and the
corresponding estimated parameter.

Internship of Master II 33 Abdelghafour HALIMI



Master’s Report Bayesian Nonparametric Methods

6.2 Unmixing the endmembers
The algorithm is used for unmixing a spectra obtained by a mixture of 3, 4, 5

and 6 pure spectra (endmembers) which follows the linear mixing model (17) and
uses normalized versions of the selected endmembers .The spectra is corrupted by a
white noise with variance σ2 = 0.00012 which corresponds to a SNR = 30dB. The
following figures show the pure spectra used as well as the spectra of the mixture
stemming from the linear mixing model.

Figure 14 – Pure(3 endmembers) and mixing spectra.

Figure 15 – Pure(4 endmembers)and mixing spectra.

Figure 16 – Pure(5 endmembers) and mixing spectra.
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Figure 17 – Pure(6 endmembers) and mixing spectra.

the algorithm was run first 150 iterations on a five-dimensional data set to esti-
mate the number of endmembers and then 300 iterations on R-1 dimensional data
set (where R is the estimated number) but this time we will fix the number of
endmembers by using the estimated number to have a better estimation of the end-
members generated from 3 , 4, 5, and 6 spectra, with 100 iterations per proportion
vector update (for each iteration we do 100 iteration with α temporarily set to 0
to have a better estimation of the abundances). The data set used in the test was
chosen using the function convhulln which allows us to select only the edge of our
simplex from different dimensions (in the test we have used the fifth dimension) as
shown in the following figures.

Figure 18 – Simplex of 3 endmembers.
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Figure 19 – Simplex of 4 endmembers.

Figure 20 – Simplex of 5 endmembers.

Figure 21 – Simplex of 6 endmembers.
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The results in the following figures show the endmembers found by using these
values of the parameters β = 5, α = 13000, σX = 1 and σE = 3 for 6 endmem-
bers ;then α = 300 for 5 endmembers , α = 100 for 4 endmembers and α = 10 for
3 endmembers and the true image (Moffet).

Three endmembers :

Figure 22 – Posterior distribution of the estimated number of endmembers.

Figure 23 – Representation of the three endmembers(true,estimated by our algo-
rithm and by VCA).
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Figure 24 – Representation of the three spectra.

Four endmembers :

Figure 25 – Posterior distribution of the estimated number of endmembers.
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Figure 26 – Representation of the four endmembers(true,estimated by our algo-
rithm and by VCA).

Figure 27 – Representation of the four spectra.
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Five endmembers :

Figure 28 – Posterior distribution of the estimated number of endmembers.

Figure 29 – Representation of the five endmembers(true,estimated by our algorithm
and by VCA).
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Figure 30 – Representation of the five spectra.

Six endmembers :

Figure 31 – Posterior distribution of the estimated number of endmembers.
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Figure 32 – Representation of the six endmembers(true,estimated by our algorithm
and by VCA).

Figure 33 – Representation of the six spectra.

As it can be seen,the correct number of endmembers were found on all test runs.
Also, the endmembers generated provide a tight fit around the test set.
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True image (Moffet)

Figure 34 – Posterior distribution of the estimated number of endmembers for the
true image(Moffet).

Figure 35 – Estimated spectra.

6.3 Unmixing performance
Criteria estimation for endmembers : the performances of the algorithm has been

compared via two criteria. First, the mean square errors (MSEs)

MSE2
r = ‖m̂r −mr|‖2 r = 1, . . . , R (40)

are good quality indicators for the estimates. In addition, another metric frequently
encountered in hyperspectral imagery literature, known as the spectral angle dis-
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tance (SAD), has been considered. The SAD measures the angle between the actual
and the corresponding estimated spectrum [28].

SADr = arccos
(
〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
(41)

where 〈., .〉 stands for the scalar product.
Criteria estimation for abundances : The quality of the unmixing strategy for

synthetic images can be measured by comparing the estimated and actual abun-
dances by using the root mean square error (RMSE) [29], [28].

RMSE =
√√√√ 1
nR

n∑
p=1
‖α(p)− α̂(p)‖2 (42)

where α(p) and α̂(p) are the actual and estimated abundance vectors of the pth
pixel of the image and n is the number of pixels. The global abundance MSEs have
been computed as

GMSE2
r =

P∑
p=1

(âp,r − ap,r)2 (43)

where âp,r is the estimated abundance coefficient of the material #r in the pixel #p
In the case of real hyperspectral images, the reconstruction error (RE) is classically
used to evaluate the quality of an unmixing method.

RE =
√√√√ 1
nL

n∑
p=1
‖y(p)− ŷ(p)‖2 (44)

where L is the number of spectral bands and y(p) and ŷ(p) are the measured and
estimated spectra for the pixel p.
The experiments were carried out by using three methods :Our algorithm, the Vertex
Component Analysis (VCA) & the VCA/Fully constrained least squares(VCA/FCLS)
[30] and the method given by Zare.
The results are contained in the Tables 2,3 and 4.
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endmembers Bayesian VCA Zare
MSE2 SAD MSE2 SAD MSE2 SAD

#1 0.0020 0.0067 0.0043 0.0087 0.0107 0.0155
R = 3 #2 0.0002 0.0027 0.0006 0.0044 0.0188 0.0243

#3 0.0001 0.0015 0.0003 0.0018 0.0273 0.0150
#1 0.0195 0.0214 1.5614 0.1799 0.0120 0.0150
#2 0.0103 0.0182 0.0354 0.0337 0.1858 0.0767

R = 4 #3 0.1286 0.0419 0.0111 0.0092 0.0325 0.0171
#4 0.0010 0.0038 0.0176 0.0137 0.0742 0.0274
#1 0.0392 0.0303 0.0209 0.0206 0.0256 0.0239
#2 0.0109 0.0186 0.3003 0.0841 0.3338 0.0995

R = 5 #3 0.0950 0.0362 0.5229 0.0835 0.0953 0.0306
#4 0.0042 0.0071 0.1304 0.0431 0.2273 0.0537
#5 0.0188 0.0076 0.2719 0.0269 0.2005 0.0356
#1 0.1578 0.0591 0.0624 0.0376 0.2766 0.0743
#2 0.0238 0.0264 0.3065 0.0976 0.7405 0.1464

R = 6 #3 0.6027 0.0972 0.5012 0.0870 0.2597 0.0641
#4 0.0249 0.0200 0.5912 0.0863 0.4110 0.0746
#5 0.0284 0.0137 0.8182 0.0552 0.4421 0.0548
#6 0.8026 0.1228 0.1034 0.0441 Not detected Not detected

Times(s) 5000 2 1800

Table 2 – Estimation of the endmembers by using three methods :Bayesian, VCA
and Zare
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abundances Bayesian VCA/FCLS Zare
GMSE2 RMSE GMSE2 RMSE GMSE2 RMSE

#1 0.0158 0.0067 0.0143 0.0073 0.3360 0.0325
R = 3 #2 0.0048 0.0133 0.1273

#3 0.0041 0.0017 0.1192
#1 0.1201 0.0339 1.6491 0.0713 0.2237 0.0339
#2 0.0372 0.6916 0.2549

R = 4 #3 0.3551 1.1915 0.1476
#4 0.3216 0.1532 0.2047
#1 0.0917 0.0229 0.2384 0.0475 0.2384 0.0402
#2 0.0372 0.4577 0.4597

R = 5 #3 0.1880 0.4120 0.1451
#4 0.0873 0.3926 0.2919
#5 0.0251 0.3374 0.1816
#1 0.2205 0.0561 0.4550 0.0683 3.4271 0.1045
#2 0.0688 0.3619 0.5429

R = 6 #3 0.4823 0.8953 2.8174
#4 0.0331 1.0606 0.9097
#5 1.0508 0.8502 0.5400
#6 0.9982 0.5987 Not detected

Table 3 – Estimation of the abundances by using three methods :Bayesian,
VCA/FCLS and Zare

RE Bayes VCA/FCLS ZARE
R = 3 0.0101 0.0101 0.0241
R = 4 0.0104 0.0206 0.0175
R = 5 0.0109 0.0134 0.0121
R = 6 0.0110 0.0144 0.0137
Moffet 0.0291 0.0340 0.0368

Table 4 – Reconstruction error for the three methods : Bayesian, VCA/FCLS and
Zare
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Conclusions
The present work consisted of the study of the various models based on the Diri-

chlet process and then applied to the imaging hyperspectral for the linear unmixing
according to the various formulations exposed in the literature. The report was or-
ganized as follows :
In the first chapter we describe Bayesian nonparametric (BNP) models. The BNP
approach is to fit a single model that can adapt its complexity to the data. Further-
more, BNP models allow the complexity to grow as more data are observed.
The second chapter deals with the Dirichlet distribution which forms our first step
toward understanding the Dirichlet process model (DPM). The DPM model pro-
vides a distribution on distributions with many attractive properties and is widely
used in practice.
The third chapter deals with the Dirichlet process mixture model which extends the
basic mixture model by applying a Dirichlet process prior to the mixing proportions.
After that, we describe three processes (Pólya’s Urn, the Chinese Restaurant and
the Indian Buffet) which allow us to generate samples from a Dirichlet process.
The fourth chapter deals with mixing models in hyperspectral imagery. Mixed pixels
are a mixture of more than one distinct substance.
In the fifth chapter, we see two applications of the Dirichlet process mixture model
(DPMM). The first application deals with the problem of clustering and the second
application concerns the problem of unmixing in hyperspectral imagery.
In the sixth chapter, we give some results concerning the simulations. We begin by
generating a mixture of (3,4 and 5) two-dimensional Gaussians and we represent
the estimated mixture and the estimated number of gaussians in the mixture. In
the second experiment, we test our algorithm on a data set generated from 3, 4, 5
and 6 endmembers. We represent respectively in different figures the data points,
the true and the estimated endmembers, the true and estimated spectra and the
estimation of the number of endmembers. As it can be seen,the correct number of
endmembers were found on all test runs. Also, the endmembers generated provide a
tight fit around the test set. We end up by applying our algorithm to the true image
(Moffet). We then estimate the number of endmembers and we show the estimated
spectra.
The performances of the algorithm has been compared via several criteria as Mean
square error (MSE), Spectral angle distance (SAD), Root mean square error (RMSE),
Global mean square error (GMSE) and the Reconstruction error (RE). The latter
one is classically used to evaluate the quality of an unmixing method in the case
of real hyperspectral images. Three method were used in order to do the experi-
ments : :Our algorithm, the Vertex Component Analysis (VCA) & the VCA/Fully
constrained least squares(VCA/FCLS) and the method given by Zare.
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Appendices
A The Product of n Multivariate Gaussian PDFs

The multivariate Gaussian PDF can be written as

p(x) = 1
(2π)d/2

√
|V|

exp
[
(x − µ)T V−1 (x − µ)

]
where d is the dimensionality of x, µ is the d-dimensional mean vector, and V is the
d-by-d dimensional covariance matrix ; this document adopts the standard notation
of using bold face symbols to represent vectors and matrices. The Gaussian PDF
can also be written in canonical notation as

p(x) = exp
[
ζ + ηTx − 1

2 xTΛx
]

(45)

where Λ = V−1, η = V−1µ and ζ = −1
2(d log (2π) − log |Λ| + ηTΛ−1η) So the

product of n Gaussian PDFs i = 1...n is

n∏
i=1

pi(x) = exp
ζi=1,...,n +

(
n∑
i=1
ηi

)T
x − 1

2 xT
(

n∑
i=1

Λi

)
x


where

ζi=1,...,n =
n∑
i=1
ζi = −1

2(nd log (2π)−
n∑
i=1

log |Λi|+
n∑
i=1
ηTi Λ−1

i ηi)

So
n∏
i=1

pi(x) = exp
ζi=1,...,n + ζn − ζn +

(
n∑
i=1
ηi

)T
x − 1

2 xT
(

n∑
i=1

Λi

)
x


= exp
(
ζi=1,...,n − ζn

)
exp

[
ζn + ηTnx − 1

2 xTΛnx
]

(46)

where
Λn =

n∑
i=1

Λi, ηn =
n∑
i=1
ηi

and

ζn = −1
2(d log (2π)− log |Λn|+ ηTnΛ−1

n ηn) (47)

Comparing Equations (45),(46), and (47) shows that the result is a scaled Gaussian
PDF over x with a mean vector and covariance matrix given by

V−1
n =

n∑
i=1

V−1
i and V−1

n µn =
n∑
i=1

V−1
i µi

The scaling factor is again a Gaussian function.
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